login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A133443
a(n) = Sum_{k=0..n} C(n,floor(k/2))*(-1)^k*3^(n-k).
1
1, 2, 8, 24, 84, 272, 920, 3040, 10180, 33840, 112968, 376224, 1254696, 4181088, 13939248, 46459584, 154873860, 516229040, 1720795880, 5735921440, 19119861304, 63732624672, 212442552528, 708140901184, 2360471473384, 7868234639072, 26227455730640
OFFSET
0,2
COMMENTS
Hankel transform is 4^n. Second binomial transform is A076035.
LINKS
FORMULA
a(n) = Sum_{k=0..n} A053121(n,k)*A015518(k+1) = (-1)^n*A127362(n). G.f.: (1/sqrt(1-4*x^2))*(1-x*c(x^2))/(1-3*x*c(x^2)), where c(x) is the g.f. of Catalan numbers A000108.
Recurrence: 3*n*a(n) = 2*(5*n-3)*a(n-1) + 4*(3*n-1)*a(n-2) - 40*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2*10^n/3^(n+1). - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
Table[Sum[Binomial[n, Floor[k/2]]*(-1)^k*3^(n-k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 20 2012 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, Nov 26 2007, Dec 07 2007
EXTENSIONS
More terms from Vincenzo Librandi, May 25 2013
STATUS
approved