login
A133441
A geometrical graph substitution of a tess-tetrahedron embedded in a cube as an eight "tone" all naturals music such that the connections can be cut to isolate the [some words were lost here].
0
2, 3, 6, 8, 2, 3, 5, 7, 2, 4, 6, 7, 2, 4, 5, 8, 2, 3, 6, 8, 2, 3, 5, 7, 1, 3, 5, 8, 1, 3, 6, 7, 2, 3, 6, 8, 1, 4, 6, 8, 2, 4, 6, 7, 1, 3, 6, 7, 2, 3, 6, 8, 1, 4, 6, 8, 1, 3, 5, 8, 2, 4, 5, 8, 1, 4, 5, 7, 1, 4, 6, 8, 1, 3, 5, 8, 1, 3, 6, 7, 1, 4, 5, 7, 1, 4, 6, 8, 2, 4, 6, 7, 2, 4, 5, 8, 1, 4, 5, 7, 2, 3, 5, 7, 1
OFFSET
1,1
FORMULA
p=1 such that: 1 -> {p*2, 3, 6, 8} 2 -> {p, 4, 5, 7} 3 -> {1, p*4, 6, 8} 4 -> {2, p*3, 5, 7} 5 -> {2, 4, p*6, 7} 6 -> {1, 3, p*5, 8} 7 -> {2, 4, 5, p*8} 8 -> {1, 3, 6, p*7}
MATHEMATICA
Clear[s]; s[1] = {2, 3, 6, 8}; s[2] = {1, 4, 5, 7}; s[3] = {1, 4, 6, 8}; s[4] = {2, 3, 5, 7}; s[5] = {2, 4, 6, 7}; s[6] = {1, 3, 5, 8}; s[7] = {2, 4, 5, 8}; s[8] = {1, 3, 6, 7}; t[a_] := Flatten[s /@ a]; p[0] = {1, 2}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; p[3]
CROSSREFS
Sequence in context: A302090 A088414 A375702 * A086254 A265297 A140266
KEYWORD
nonn,uned,obsc
AUTHOR
Roger L. Bagula, Nov 26 2007
STATUS
approved