login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A133406
Half the number of ways of placing up to n pawns on a length n chessboard row so that the row balances at its middle.
7
1, 1, 2, 2, 4, 4, 10, 9, 26, 24, 76, 69, 236, 214, 760, 696, 2522, 2326, 8556, 7942, 29504, 27562, 103130, 96862, 364548, 344004, 1300820, 1232567, 4679472, 4449850, 16952162, 16171118, 61790442, 59107890, 226451036, 217157069, 833918840
OFFSET
1,3
COMMENTS
Odd-indexed terms are A047653.
Also the number of subsets of {1..n-1} that are empty or have mean (n-1)/2. - Gus Wiseman, Apr 23 2023
LINKS
FORMULA
From Gus Wiseman, Apr 23 2023: (Start)
a(2n+1) = A000980(n)/2 = A047653(n).
a(n) = A362046(n-1) + 1.
(End)
EXAMPLE
From Gus Wiseman, Apr 23 2023: (Start)
The a(1) = 1 through a(8) = 9 subsets:
{} {} {} {} {} {} {} {}
{1} {1,2} {2} {1,4} {3} {1,6}
{1,3} {2,3} {1,5} {2,5}
{1,2,3} {1,2,3,4} {2,4} {3,4}
{1,2,6} {1,2,4,7}
{1,3,5} {1,2,5,6}
{2,3,4} {1,3,4,6}
{1,2,3,6} {2,3,4,5}
{1,2,4,5} {1,2,3,4,5,6}
{1,2,3,4,5}
(End)
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Length[#]==0||Mean[#]==n/2&]], {n, 0, 10}] (* Gus Wiseman, Apr 23 2023 *)
PROG
(PARI) a(n) = {polcoef(prod(k=1, n, 1 + 'x^(2*k-n-1)), 0)/2} \\ Andrew Howroyd, Jan 07 2023
CROSSREFS
For median instead of mean we have A361801 + 1, the doubling of A024718.
Not counting the empty set gives A362046 (shifted left).
A007318 counts subsets by length, A327481 by integer mean.
A047653 counts subsets of {1..2n} with mean n, nonempty A212352.
A070925 counts subsets of {1..2n-1} with mean n, nonempty A000980.
A327475 counts subsets with integer mean, nonempty A051293.
Sequence in context: A231523 A114338 A170831 * A240381 A295746 A272104
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 24 2007
STATUS
approved