login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A231523
T(n,k)=Number of nXk 0..1 arrays with no element less than a strict majority of its horizontal, diagonal and antidiagonal neighbors
13
2, 2, 4, 4, 10, 8, 7, 34, 21, 16, 12, 107, 153, 48, 32, 21, 342, 865, 776, 113, 64, 37, 1069, 4665, 7697, 3861, 261, 128, 65, 3381, 25556, 70462, 66499, 18721, 601, 256, 114, 10689, 144847, 680302, 1031105, 571226, 91993, 1390, 512, 200, 33808, 817539
OFFSET
1,1
COMMENTS
Table starts
....2....2........4..........7...........12..............21................37
....4...10.......34........107..........342............1069..............3381
....8...21......153........865.........4665...........25556............144847
...16...48......776.......7697........70462..........680302...........6935963
...32..113.....3861......66499......1031105........17572772.........322599407
...64..261....18721.....571226.....15000701.......451200772.......14940780666
..128..601....91993....4944075....219937967.....11683058939......697702378939
..256.1390...453274...42759650...3222629836....302190345444....32529760276112
..512.3216..2223662..369356733..47159743290...7806399525348..1514885617016157
.1024.7435.10915727.3191749214.690399979855.201765495180944.70592106166184098
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 3*a(n-1) -2*a(n-2) +2*a(n-3) -2*a(n-4) -a(n-5) for n>6
k=3: [order 13] for n>14
k=4: [order 24] for n>25
k=5: [order 70] for n>71
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2) +a(n-3) for n>4
n=2: a(n) = 4*a(n-1) -3*a(n-2) +a(n-3) +6*a(n-4) -18*a(n-5)
n=3: [order 16] for n>17
n=4: [order 39] for n>40
EXAMPLE
Some solutions for n=4 k=4
..1..0..0..0....1..0..1..1....1..1..0..1....0..0..0..0....0..1..0..1
..1..0..0..0....0..0..0..1....1..0..0..0....0..0..0..1....1..0..0..0
..0..0..0..0....0..0..1..0....0..0..0..1....1..0..0..1....1..0..1..0
..0..1..1..1....0..0..0..0....0..1..0..0....0..0..0..1....0..0..0..1
CROSSREFS
Column 1 is A000079
Column 2 is A231376
Row 1 is A005251(n+2)
Sequence in context: A109525 A243330 A318838 * A114338 A170831 A133406
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 10 2013
STATUS
approved