

A132993


Triangle t(n,m) = P(nm+1) * P(m+1) read by rows, 0<=m<=n, where P=A000041 are the partition numbers.


1



1, 2, 2, 3, 4, 3, 5, 6, 6, 5, 7, 10, 9, 10, 7, 11, 14, 15, 15, 14, 11, 15, 22, 21, 25, 21, 22, 15, 22, 30, 33, 35, 35, 33, 30, 22, 30, 44, 45, 55, 49, 55, 45, 44, 30, 42, 60, 66, 75, 77, 77, 75, 66, 60, 42, 56, 84, 90, 110, 105, 121, 105, 110, 90, 84, 56
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..65.


EXAMPLE

1;
2, 2;
3, 4, 3;
5, 6, 6, 5;
7, 10, 9, 10, 7;
11, 14, 15, 15, 14, 11;
15, 22, 21, 25, 21, 22, 15;
22, 30, 33, 35, 35, 33, 30, 22;
30, 44, 45, 55, 49, 55, 45, 44, 30;
42, 60, 66, 75, 77, 77, 75, 66, 60, 42;
56, 84, 90, 110, 105, 121, 105, 110, 90, 84, 56;


MAPLE

A132993 := proc(n, m)
combinat[numbpart](nm+1)*combinat[numbpart](m+1) ;
end proc:
seq(seq(A132993(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Nov 11 2011


MATHEMATICA

<< DiscreteMath`Combinatorica`; << DiscreteMath`IntegerPartitions`; Clear[t, n, m]; t[n_, m_] = PartitionsP[n  m + 1]*PartitionsP[m + 1]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]


CROSSREFS

Cf. A000041, A048574 (row sums).
Sequence in context: A165634 A128282 A146985 * A106408 A143061 A096858
Adjacent sequences: A132990 A132991 A132992 * A132994 A132995 A132996


KEYWORD

nonn,tabl


AUTHOR

Roger L. Bagula and Gary W. Adamson, Aug 27 2008


STATUS

approved



