login
A131982
Numbers n such that A131981(n) = n/2.
2
576, 584, 588, 592, 600, 1650, 1654, 3430, 3440, 3448, 3452, 3458, 3462, 3466, 3474, 3520, 3600, 3608, 3610
OFFSET
1,1
COMMENTS
Numbers n such that number of terms <= n of A116700 equals number of terms <= n of A131881.
Numbers n such that numbers of numbers that occur in the concatenation of 1,2,3...,n-1 equals numbers of numbers that do not occur in the concatenation of 1,2,3...,n-1.
There are no other terms <= 600000. The plots in the link strongly suggest that the sequence is complete.
EXAMPLE
A131981(n) < n/2 for 1 <=n < 576,
A131981(n) < n/2 for 576 < n < 584,
A131981(n) > n/2 for 584 < n < 588,
A131981(n) < n/2 for 588 < n < 592,
A131981(n) > n/2 for 592 < n < 600,
A131981(n) > n/2 for 600 < n < 1650,
A131981(n) > n/2 for 1650 < n < 1654,
A131981(n) < n/2 for 1654 < n < 3430,
A131981(n) > n/2 for 3430 < n < 3440,
..............
A131981(n) < n/2 for 3608 < n <= 3610,
A131981(n) > n/2 for 3610 < n <= 600000.
PROG
(JBASIC)
s$ = "" : c = 0 : d = 0
FOR n = 1 TO 4000
sn$ = str$(n)
IF instr(s$, sn$) > 0 THEN d = d+1 ELSE c = c+1
s$ = s$ + sn$ : IF c = d THEN print n ; ", ";
NEXT
CROSSREFS
Cf. A116700 (early bird numbers), A131881 (complement of A116700), A131981 (number of early bird numbers <= n), A105390 (number of Rollman numbers <= n), A105391 (numbers n such that A105390(n) = n/2).
Sequence in context: A069421 A136111 A199549 * A295017 A053969 A316486
KEYWORD
nonn,base
AUTHOR
Klaus Brockhaus, Aug 15 2007
EXTENSIONS
Edited by Charles R Greathouse IV, Oct 28 2009
STATUS
approved