login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131526
Number of degree-n permutations such that number of cycles of size 2k is even (or zero) and number of cycles of size 2k-1 is odd (or zero), for every k.
1
1, 1, 0, 3, 11, 40, 184, 1036, 12949, 88488, 807008, 7362586, 113572183, 1238477032, 15630890560, 228998728050, 4141605806441, 62222251093216, 1030119451142656, 19050688698470434, 412037845709792107, 8102391640556570616, 165794307361686866432
OFFSET
0,4
LINKS
FORMULA
E.g.f.: Product(1+sinh(x^(2*k-1)/(2*k-1)), k=1..infinity) *Product(cosh(x^(2*k)/(2*k)), k=1..infinity).
EXAMPLE
a(4)=11 because we have (1)(234), (1)(243), (123)(4), (124)(3), (132)(4), (134)(2), (142)(3), (143)(2), (12)(34), (13)(24) and (14)(23).
MAPLE
g:=(product(1+sinh(x^(2*k-1)/(2*k-1)), k=1..40))*(product(cosh(x^(2*k)/(2*k)), k=1..40)): gser:=series(g, x=0, 25); seq(factorial(n)*coeff(gser, x, n), n=0..21); # Emeric Deutsch, Aug 28 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i+j, 2)=0, multinomial(n, n-i*j, i$j)*
(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 09 2015
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!);
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i + j, 2] == 0, multinomial[n, {n - i j} ~Join~ Table[i, {j}]] (i - 1)!^j/j! b[n - i j, i - 1], 0], {j, 0, n/i}]]];
a[n_] := b[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Nov 19 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A242467 A149064 A149065 * A329261 A073622 A351428
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 25 2007
EXTENSIONS
More terms from Emeric Deutsch, Aug 28 2007
STATUS
approved