login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130648
Number of degree-n permutations without even cycles and such that number of cycles of size 2k-1 is odd (or zero) for every k.
2
1, 1, 0, 3, 8, 25, 184, 721, 9904, 66753, 691088, 5973121, 84925048, 940427137, 12801319816, 186556383105, 3174772979936, 48489077948161, 842173637012896, 15359492773456129, 316965131969908072, 6368424993521096961, 135098381153771956952, 2980219360336428021505
OFFSET
0,4
LINKS
FORMULA
E.g.f.: Product_{k>0} (1+sinh(x^(2*k-1)/(2*k-1))).
EXAMPLE
a(3)=3 because we have (1)(2)(3), (123) and (132).
MAPLE
g:=product(1+sinh(x^(2*k-1)/(2*k-1)), k=1..30): gser:=series(g, x=0, 27): seq(factorial(n)*coeff(gser, x, n), n=0..24); # Emeric Deutsch, Aug 24 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=1 and irem(j, 2)=1, multinomial(n,
n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 09 2015
MATHEMATICA
multinomial[n_, k_] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 && Mod[j, 2] == 1, multinomial[n, Join[{n-i*j}, Array[i&, j]]]*(i-1)!^j/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 08 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A060307.
Sequence in context: A268114 A097713 A009392 * A061812 A009452 A206141
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 11 2007
EXTENSIONS
More terms from Emeric Deutsch, Aug 24 2007
STATUS
approved