login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131246
Row sums of triangle A131245.
6
1, 3, 6, 13, 27, 57, 119, 250, 523, 1097, 2297, 4815, 10086, 21137, 44283, 92793, 194419, 407378, 853559, 1788481, 3747361, 7851867, 16451910, 34471669, 72228171, 151339401, 317100335, 664418698, 1392152131
OFFSET
0,2
COMMENTS
A131244 is a companion sequence.
FORMULA
G.f. -(1+x)*(x^2-x-1)/ ( 1-x-3*x^2+x^3+x^4 ). - R. J. Mathar, Jan 29 2011
a(0)=1, a(1)=3, a(2)=6, a(3)=13, a(n)=a(n-1)+3*a(n-2)-a(n-3)-a(n-4). - Harvey P. Dale, Sep 07 2013
EXAMPLE
a(3) = 13 = sum of row 3 terms of triangle A131245: (5 + 5 + 2 + 1)
MAPLE
A046854 := proc(n, k) binomial(floor((n+k)/2), k) ; end proc:
A131245 := proc(n, k) local a, j ; a := 0 ; for j from k to n do a := a+ A046854(n, j)*A046854(j, k) ; end do: a ; end proc:
A131246 := proc(n) add(A131245(n, k), k=0..n) ; end proc:
seq(A131246(n), n=0..50) ; # R. J. Mathar, Jan 29 2011
MATHEMATICA
CoefficientList[Series[-(1+x)(x^2-x-1)/(1-x-3x^2+x^3+x^4), {x, 0, 30}], x] (* or *) LinearRecurrence[{1, 3, -1, -1}, {1, 3, 6, 13}, 30] (* Harvey P. Dale, Sep 07 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jun 22 2007
STATUS
approved