login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131111
T(n, k) = 3*binomial(n,k) - 2*I(n,k), where I is the identity matrix; triangle T read by rows (n >= 0 and 0 <= k <= n).
4
1, 3, 1, 3, 6, 1, 3, 9, 9, 1, 3, 12, 18, 12, 1, 3, 15, 30, 30, 15, 1, 3, 18, 45, 60, 45, 18, 1, 3, 21, 63, 105, 105, 63, 21, 1, 3, 24, 84, 168, 210, 168, 84, 24, 1, 3, 27, 108, 252, 378, 378, 252, 108, 27, 1
OFFSET
0,2
COMMENTS
Row sums = A033484: (1, 4, 10, 22, 46, ...) = 3*2^n - 2.
FORMULA
T(n,k) = 3*A007318(n,k) - 2*I(n,k), where A007318 = Pascal's triangle and I = Identity matrix.
Bivariate o.g.f.: Sum_{n,k>=0} T(n,k)*x^n*y^k = (1 + 2*x - x*y)/((1 - x*y)*(1 - x - x*y)). - Petros Hadjicostas, Feb 20 2021
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
3, 1;
3, 6, 1;
3, 9, 9, 1;
3, 12, 18, 12, 1;
3, 15, 30, 30, 15, 1;
3, 18, 45, 60, 45, 18, 1;
...
MAPLE
seq(seq(`if`(k=n, 1, 3*binomial(n, k)), k=0..n), n=0..10); # G. C. Greubel, Nov 18 2019
MATHEMATICA
Table[If[k==n, 1, 3*Binomial[n, k]], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 18 2019 *)
PROG
(PARI) T(n, k) = if(k==n, 1, 3*binomial(n, k)); \\ G. C. Greubel, Nov 18 2019
(Magma) [k eq n select 1 else 3*Binomial(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 18 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==n): return 1
else: return 3*binomial(n, k)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 18 2019
(GAP)
T:= function(n, k)
if k=n then return 1;
else return 3*Binomial(n, k);
fi; end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Nov 18 2019
CROSSREFS
KEYWORD
nonn,tabl,easy,less
AUTHOR
Gary W. Adamson, Jun 15 2007
STATUS
approved