login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130877
Numbers that are congruent to {0, 5} mod 9.
2
0, 5, 9, 14, 18, 23, 27, 32, 36, 41, 45, 50, 54, 59, 63, 68, 72, 77, 81, 86, 90, 95, 99, 104, 108, 113, 117, 122, 126, 131, 135, 140, 144, 149, 153, 158, 162, 167, 171, 176, 180, 185, 189, 194, 198, 203, 207, 212, 216, 221, 225, 230, 234, 239, 243, 248, 252, 257
OFFSET
1,2
COMMENTS
Numbers m such that m = digitsum(k*(m+k)) for some k>=0.
The first differences are 2-periodic: 5, 4, 5, 4, etc. The minimum numbers k associated to the first elements of the sequence are (m,k): (0,0), (5,2), (9,3), (14,5), (18,15), (23,44), (27,42), (32,119), etc.
FORMULA
a(n) = a(n-2) + 9 for n >= 3.
a(n) = 9/2*(n+1) - 4 + Sum{j=0..n} (-1)^j/2.
O.g.f.: x^2(5+4x)/((1+x)(1-x)^2). a(n) = 9(n-1)/2+(1+(-1)^n)/4. - R. J. Mathar, Jun 13 2008
a(n+1) = Sum_{k>=0} A030308(n,k)*A116453(k+1). - Philippe Deléham, Oct 17 2011
a(n) = 5n - 5 - floor((n-1)/2). - Wesley Ivan Hurt, Oct 25 2013
MAPLE
op(select(n->n mod 9=0 or n mod 9=5, [$0..257])); # Paolo P. Lava, Jul 12 2018
MATHEMATICA
Table[5n-5-Floor[(n-1)/2], {n, 100}] (* Wesley Ivan Hurt, Oct 25 2013 *)
Select[Range[0, 300], MemberQ[{0, 5}, Mod[#, 9]]&] (* or *) LinearRecurrence[ {1, 1, -1}, {0, 5, 9}, 60] (* Harvey P. Dale, Aug 04 2019 *)
PROG
(PARI) forstep(n=0, 200, [5, 4], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
CROSSREFS
Sequence in context: A314834 A314835 A314836 * A314837 A314838 A314839
KEYWORD
nonn,easy
AUTHOR
STATUS
approved