The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130875 Absolute difference of final digits of two consecutive cubes. 0
 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1, 1, 3, 1, 7, 9, 1, 7, 1, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Periodic with period 10. LINKS Table of n, a(n) for n=1..105. Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,1). FORMULA a(n) = a(n-10). - Colin Barker, Dec 04 2014 G.f.: -x*(9*x^9+7*x^8+x^7+3*x^6+x^5+x^4+3*x^3+x^2+7*x+1) / ((x-1)*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Dec 04 2014 MATHEMATICA LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 7, 1, 3, 1, 1, 3, 1, 7, 9}, 105] (* Ray Chandler, Aug 26 2015 *) Abs[Differences[Mod[#, 10]]]&/@Partition[Range[0, 120]^3, 2, 1]//Flatten (* or *) PadRight[{}, 120, {1, 7, 1, 3, 1, 1, 3, 1, 7, 9}] (* Harvey P. Dale, Oct 27 2019 *) PROG (PARI) Vec(-x*(9*x^9+7*x^8+x^7+3*x^6+x^5+x^4+3*x^3+x^2+7*x+1)/((x-1)*(x+1)*(x^4-x^3+x^2-x+1)*(x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Dec 04 2014 CROSSREFS Cf. A008960. Sequence in context: A266985 A286912 A239807 * A370112 A200923 A317830 Adjacent sequences: A130872 A130873 A130874 * A130876 A130877 A130878 KEYWORD base,easy,nonn AUTHOR Giovanni Teofilatto, Jul 25 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 10:34 EDT 2024. Contains 372760 sequences. (Running on oeis4.)