login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130862
a(n) = (n-1)*(n+2)*(2*n+11)/2.
1
0, 30, 85, 171, 294, 460, 675, 945, 1276, 1674, 2145, 2695, 3330, 4056, 4879, 5805, 6840, 7990, 9261, 10659, 12190, 13860, 15675, 17641, 19764, 22050, 24505, 27135, 29946, 32944, 36135, 39525, 43120, 46926, 50949, 55195, 59670, 64380, 69331, 74529, 79980, 85690, 91665, 97911, 104434, 111240, 118335, 125725, 133416, 141414
OFFSET
1,2
FORMULA
a(n) = (5/2)*(n+2)*(n+3)*(Sum_{j=1..n} Sum_{m=1..j} Sum_{k=1..m} (k^2-1))/(Sum_{j=1..n} Sum_{m=1..j} Sum_{k=1..m} k) = (5/2)*(n+2)*(n+3)*A130857(n)/A000332(n+3).
G.f.: x^2*(30-35*x+11*x^2)/(-1+x)^4. - R. J. Mathar, Nov 14 2007
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=30, a(2)=85, a(3)=171. - Harvey P. Dale, May 01 2011
MATHEMATICA
Rest[CoefficientList[Series[x^2(30-35x+11x^2)/(-1+x)^4, {x, 0, 30}], x]] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 30, 85, 171}, 30] (* Harvey P. Dale, May 01 2011 *)
PROG
(Magma) [(n-1)*(n+2)*(2*n+11)/2: n in [1..50]]; // Vincenzo Librandi, May 02 2011
(PARI) a(n)=(2*n^3 + 13*n^2 + 7*n - 22)/2 \\ Charles R Greathouse IV, May 02, 2011
CROSSREFS
Cf. A055998.
Sequence in context: A326309 A326838 A098996 * A070756 A058903 A254474
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Jul 22 2007
EXTENSIONS
Edited by N. J. A. Sloane, May 01 2011
STATUS
approved