The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130862 a(n) = (n-1)*(n+2)*(2*n+11)/2. 1
 0, 30, 85, 171, 294, 460, 675, 945, 1276, 1674, 2145, 2695, 3330, 4056, 4879, 5805, 6840, 7990, 9261, 10659, 12190, 13860, 15675, 17641, 19764, 22050, 24505, 27135, 29946, 32944, 36135, 39525, 43120, 46926, 50949, 55195, 59670, 64380, 69331, 74529, 79980, 85690, 91665, 97911, 104434, 111240, 118335, 125725, 133416, 141414 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = (5/2)*(n + 2)*(n + 3)*Sum[Sum[Sum[k^2 - 1, { k, 1, m}], {m, 1, j}], {j, 1, n}]/Sum[Sum[Sum[k, {k, 1, m}], {m, 1, j}], {j, 1, n}]=(1/2)(-1 + n))((2 + n)(11 + 2 n) G.f.: x^2*(30-35*x+11*x^2)/(-1+x)^4. - R. J. Mathar, Nov 14 2007 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=30, a(2)=85, a(3)=171. - Harvey P. Dale, May 01 2011 MATHEMATICA Rest[CoefficientList[Series[x^2(30-35x+11x^2)/(-1+x)^4, {x, 0, 30}], x]] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 30, 85, 171}, 30] (* Harvey P. Dale, May 01 2011 *) PROG (Magma) [(n-1)*(n+2)*(2*n+11)/2: n in [1..50]]; // Vincenzo Librandi, May 02 2011 (PARI) a(n)=(2*n^3 + 13*n^2 + 7*n - 22)/2 \\ Charles R Greathouse IV, May 02, 2011 CROSSREFS Cf. A055998. Sequence in context: A326309 A326838 A098996 * A070756 A058903 A254474 Adjacent sequences: A130859 A130860 A130861 * A130863 A130864 A130865 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Jul 22 2007 EXTENSIONS Edited by N. J. A. Sloane, May 01 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)