login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130863
Ratio of quadruple Sum of k^2-1 to quadruple sum of k made into an integer sequence: (1/6)*(-1 + n)(2 + n)(3 + n)(7 + n).
0
0, 30, 100, 231, 448, 780, 1260, 1925, 2816, 3978, 5460, 7315, 9600, 12376, 15708, 19665, 24320, 29750, 36036, 43263, 51520, 60900, 71500, 83421, 96768, 111650, 128180, 146475, 166656, 188848
OFFSET
1,2
COMMENTS
Double sum ratio is: A055998
FORMULA
a(n) =1/2)*(n + 2)*(n + 3)*(n + 4)*Sum[Sum[Sum[Sum[k^2 - 1, {k, 1, m}], {m, 1, j}], {j, 1, l}], {l, 1, n}]/Sum[Sum[Sum[Sum[k, {k, 1, m}], {m, 1, j}], { j, 1, l}], {l, 1, n}]=(1/6)*(-1 + n)(2 + n)(3 + n)(7 + n)
G.f.: x^2*(-30+50*x-31*x^2+7*x^3)/(-1+x)^5. - R. J. Mathar, Nov 14 2007
MATHEMATICA
h[n_] = (1/2)*(n + 2)*(n + 3)*(n + 4)*Sum[Sum[Sum[Sum[k^2 - 1, {k, 1, m}], {m, 1, j}], {j, 1, l}], {l, 1, n}]/Sum[Sum[Sum[Sum[k, {k, 1, m}], {m, 1, j}], {j, 1, l}], {l, 1, n}]; Table[h[n], {n, 1, 30}]
CROSSREFS
Cf. A055998.
Sequence in context: A002758 A346855 A187401 * A070114 A070132 A280911
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Jul 22 2007
STATUS
approved