login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130755 Binomial transform of periodic sequence (3, 1, 2). 10
3, 4, 7, 15, 32, 65, 129, 256, 511, 1023, 2048, 4097, 8193, 16384, 32767, 65535, 131072, 262145, 524289, 1048576, 2097151, 4194303, 8388608, 16777217, 33554433, 67108864, 134217727, 268435455, 536870912, 1073741825, 2147483649 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The third sequence of "less twisted numbers"; this sequence, A130750 and A130752 form a "suite en trio" (cf. reference, p. 130).

First differences of A130752, second differences of A130750.

Sequence equals its third differences:

  3     4     7    15    32    65   129   256   511  1023

     1     3     8    17    33    64   127   255   512

        2     5     9    16    31    63   128   257

           3     4     7    15    32    65   129

REFERENCES

P. Curtz, Exercise Book, manuscript, 1995.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..300 from Vincenzo Librandi)

Index entries for linear recurrences with constant coefficients, signature (3,-3,2).

FORMULA

G.f.: (3-5*x+4*x^2)/((1-2*x)*(1-x+x^2)).

a(0) = 3; a(1) = 4; a(2) = 7; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3).

a(n) = 2^(n+1) + A128834(n+2).

a(0) = 3; for n > 0, a(n) = 2*a(n-1) + A057079(n+3).

MATHEMATICA

CoefficientList[Series[(3-5*x+4*x^2)/((1-2*x)*(1-x+x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 2}, {3, 4, 7}, 30] (* G. C. Greubel, Jan 15 2018 *)

PROG

(MAGMA) m:=31; S:=[ [3, 1, 2][(n-1) mod 3 +1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // Klaus Brockhaus, Aug 03 2007

(MAGMA) I:=[3, 4, 7]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2018

(PARI) {m=31; v=vector(m); v[1]=3; v[2]=4; v[3]=7; for(n=4, m, v[n]=3*v[n-1]-3*v[n-2]+2*v[n-3]); v} \\ Klaus Brockhaus, Aug 03 2007

(PARI) {for(n=0, 30, print1(2^(n+1)+[1, 0, -1, -1, 0, 1][n%6+1], ", "))} \\ Klaus Brockhaus, Aug 03 2007

CROSSREFS

Cf. A010882 (periodic (1, 2, 3)), A128834 (periodic (0, 1, 1, 0, -1, -1)), A057079 (periodic (1, 2, 1, -1, -2, -1)), A130750 (first differences), A130752 (second differences).

Sequence in context: A329666 A187493 A027020 * A286348 A116090 A287741

Adjacent sequences:  A130752 A130753 A130754 * A130756 A130757 A130758

KEYWORD

nonn,easy

AUTHOR

Paul Curtz, Jul 13 2007

EXTENSIONS

Edited and extended by Klaus Brockhaus, Aug 03 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 03:53 EDT 2022. Contains 356184 sequences. (Running on oeis4.)