login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130755
Binomial transform of periodic sequence (3, 1, 2).
10
3, 4, 7, 15, 32, 65, 129, 256, 511, 1023, 2048, 4097, 8193, 16384, 32767, 65535, 131072, 262145, 524289, 1048576, 2097151, 4194303, 8388608, 16777217, 33554433, 67108864, 134217727, 268435455, 536870912, 1073741825, 2147483649
OFFSET
0,1
COMMENTS
The third sequence of "less twisted numbers"; this sequence, A130750 and A130752 form a "suite en trio" (cf. reference, p. 130).
First differences of A130752, second differences of A130750.
Sequence equals its third differences:
3 4 7 15 32 65 129 256 511 1023
1 3 8 17 33 64 127 255 512
2 5 9 16 31 63 128 257
3 4 7 15 32 65 129
REFERENCES
P. Curtz, Exercise Book, manuscript, 1995.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..300 from Vincenzo Librandi)
FORMULA
G.f.: (3-5*x+4*x^2)/((1-2*x)*(1-x+x^2)).
a(0) = 3; a(1) = 4; a(2) = 7; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3).
a(n) = 2^(n+1) + A128834(n+2).
a(0) = 3; for n > 0, a(n) = 2*a(n-1) + A057079(n+3).
MATHEMATICA
CoefficientList[Series[(3-5*x+4*x^2)/((1-2*x)*(1-x+x^2)), {x, 0, 50}], x] (* or *) LinearRecurrence[{3, -3, 2}, {3, 4, 7}, 30] (* G. C. Greubel, Jan 15 2018 *)
PROG
(Magma) m:=31; S:=[ [3, 1, 2][(n-1) mod 3 +1]: n in [1..m] ]; [ &+[ Binomial(i-1, k-1)*S[k]: k in [1..i] ]: i in [1..m] ]; // Klaus Brockhaus, Aug 03 2007
(Magma) I:=[3, 4, 7]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jan 15 2018
(PARI) {m=31; v=vector(m); v[1]=3; v[2]=4; v[3]=7; for(n=4, m, v[n]=3*v[n-1]-3*v[n-2]+2*v[n-3]); v} \\ Klaus Brockhaus, Aug 03 2007
(PARI) {for(n=0, 30, print1(2^(n+1)+[1, 0, -1, -1, 0, 1][n%6+1], ", "))} \\ Klaus Brockhaus, Aug 03 2007
CROSSREFS
Cf. A010882 (periodic (1, 2, 3)), A128834 (periodic (0, 1, 1, 0, -1, -1)), A057079 (periodic (1, 2, 1, -1, -2, -1)), A130750 (first differences), A130752 (second differences).
Sequence in context: A329666 A187493 A027020 * A361635 A286348 A116090
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jul 13 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus, Aug 03 2007
STATUS
approved