The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A130506 a(1)=1; a(n) = Product_{r=0..2^(n-2)-1} (n^2 - prime(n-1) + r) if n > 1, where prime(i) is the i-th prime. 1
 1, 2, 42, 24024, 43609104000, 1315041316842168115200000, 3529525662153455013215570189186777498682088488960000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The first four terms agree with a Riemann Hypothesis related sequence. REFERENCES Marcus du Sautoy, "The Music of the Primes", Harper Collins, 2003. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10 EXAMPLE a(4) = 24024 because 24024 = (16 - 5 + 0)*(16 - 5 + 1)*(16 - 5 + 2)*(16 - 5 + 3). MATHEMATICA f[n_]:= Product[n^2 - Prime[n-1] + i, {i, 0, 2^(n-2) -1}]; f[1] = 1; Array[f, 7] (* Robert G. Wilson v, Oct 14 2012 *) PROG (MAGMA) [1] cat [(&*[ n^2 -NthPrime(n-1) +j: j in [0..(2^(n-2)-1)]]): n in [2..10]]; // G. C. Greubel, May 04 2021 (Sage) [1]+[product( n^2 -nth_prime(n-1) +j for j in (0..(2^(n-2)-1)) ) for n in (2..10)] # G. C. Greubel, May 04 2021 CROSSREFS Cf. A039622. Sequence in context: A182192 A330229 A039622 * A273399 A052078 A069544 Adjacent sequences:  A130503 A130504 A130505 * A130507 A130508 A130509 KEYWORD easy,nonn AUTHOR Ben de la Rosa & Johan Meyer (meyerjh.sci(AT)ufs.ac.za), Aug 08 2007 EXTENSIONS a(7) from Robert G. Wilson v, Oct 14 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 16:03 EDT 2021. Contains 346291 sequences. (Running on oeis4.)