login
A069544
Continued fraction for Feigenbaum's constant - 4 = 0.6692...
4
1, 2, 43, 2, 163, 2, 3, 1, 1, 2, 5, 1, 2, 3, 80, 2, 5, 2, 1, 1, 1, 33, 1, 1, 53, 1, 1, 1, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 239, 1, 3, 31, 1, 1, 11, 1, 13, 123, 2, 2, 2, 2, 13, 15, 1, 2, 3, 3, 1, 3, 1, 1, 6, 1, 3, 1, 1, 13, 8, 1, 7, 1, 2, 1, 8, 7, 1, 17, 1, 6, 1, 1, 3, 1, 1, 13, 1, 1, 4, 2, 9, 124
OFFSET
0,2
COMMENTS
This sequence should have offset 1, since the first term already corresponds to the fractional and not to the integer part. See A159766 for a better variant. - M. F. Hasler, Apr 30 2018
LINKS
David Broadhurst, 1019 decimal digits of Feigenbaum's delta. Correspondence to Simon Plouffe and others, 22-Mar-1999.
FORMULA
delta - 4 = 1/( 1 + 1/( 2 + 1/( 43 + 1/( 2 + 1/( 163 + ... ))))) = 0.66920160910... - M. F. Hasler, Apr 30 2018
PROG
(PARI) default(realprecision, 999); {/*paste here delta=... from the Broadhurst link*/}; contfrac(delta)[^1] \\ M. F. Hasler, Apr 30 2018
CROSSREFS
Cf. A159766 (continued fraction of delta), A006890 (decimal expansion).
Sequence in context: A130506 A273399 A052078 * A256285 A360549 A268467
KEYWORD
cofr,nonn
AUTHOR
Christopher Lund (clund(AT)san.rr.com), Apr 17 2002
STATUS
approved