login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130163
Numbers k such that k^2 divides 2*Fibonacci(k).
2
1, 12, 24, 168, 552, 2184, 3864, 4872, 13944, 28056, 35448, 47208, 50232, 63336, 70728, 75624, 76728, 112056, 172536, 181272, 224952, 239736, 254472, 287448, 320712, 364728, 381432, 404376, 457608, 460824, 508872, 529368, 537096, 613704, 645288, 813624
OFFSET
1,2
COMMENTS
A subset of A023172.
All listed terms for n>2 are divisible by a(3) = 24 = 2^3*3.
All listed terms for n>3, except a(5), are divisible by a(4) = 168 = 2^3*3*7.
LINKS
Keith Schneider and Giovanni Resta, Table of n, a(n) for n = 1..776 (terms < 4*10^9, first 39 terms from Keith Schneider)
EXAMPLE
24 is a term because 24^2 = 2^6*3^2 divides 2*Fibonacci(24) = 2*46368 = 2^6*3^2*7*23.
MATHEMATICA
a=0; b=1; c=1; Do[a=b; b=c; c=a+b; If[Mod[2c, (n+2)^2]==0, Print[n+2]], {n, 1, 40000}] (* Stefan Steinerberger, May 15 2007 *)
A130163 = {1}; a = 0; b = 12; c = 3864; Do[If[Mod[24b, n^2] == 0, A130163 = Append[A130163, n]]; a = b; b = c; c = 322b - a; , {n, 12, 1000000, 12}];
Length[A130163]
(* Keith Schneider, May 27 2007 *)
PROG
(Magma) [n: n in [1..2*10^5] | 2*Fibonacci(n) mod n^2 eq 0 ]; // Vincenzo Librandi, Sep 17 2015
CROSSREFS
Cf. A000045.
Cf. A023172 (n divides Fibonacci(n)), A130164 (n^2 divides 3*Fibonacci(n)).
Sequence in context: A289335 A056500 A056490 * A002167 A154268 A058994
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, May 14 2007
EXTENSIONS
More terms from Stefan Steinerberger, May 15 2007
a(14) corrected by N. J. A. Sloane, Nov 23 2007
STATUS
approved