login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130107
Möbius transform of A063659.
1
1, 1, 2, 1, 4, 2, 6, 3, 5, 4, 10, 2, 12, 6, 8, 6, 16, 5, 18, 4, 12, 10, 22, 6, 19, 12, 16, 6, 28, 8, 30, 12, 20, 16, 24, 5, 36, 18, 24, 12, 40, 12, 42, 10, 20, 22, 46, 12, 41, 19, 32, 12, 52, 16, 40, 18, 36, 28, 58, 8, 60, 30, 30, 24, 48, 20, 66, 16, 44, 24
OFFSET
1,3
COMMENTS
Double inverse Möbius transform of A130107 = A001615: (1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, ...).
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..2000
Steven R. Finch, Primitive Cusp Forms, April 27, 2009. [Cached copy, with permission of the author]
FORMULA
A054525 * A063659, (1, 2, 3, 3, 5, 6, 7, 6, 8, 10, ...).
Multiplicative with a(p^e) = p-1 if e=1, a(p^e) = p^2-p-1 if e=2, a(p^e) = p^(e-3)*(p+1)*(p-1)^2. - Enrique Pérez Herrero, Apr 03 2014
Dirichlet g.f.: zeta(s-1) / (zeta(s) * zeta(2s)). - Álvar Ibeas, Mar 07 2015
Sum_{k=1..n} a(k) ~ 270*n^2 / Pi^6. - Vaclav Kotesovec, Jan 11 2019
EXAMPLE
G.f. = x + x^2 + 2*x^3 + x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 3*x^8 + 5*x^9 + ...
MAPLE
with(numtheory): A130107 := proc(n) local dp, mtdp, d, p;
dp := n -> n*mul((1+1/p), p=factorset(n));
mtdp := n -> add(mobius(n/d)*dp(d), d=divisors(n));
add(mobius(n/d)*mtdp(d), d=divisors(n)) end:
seq(A130107(n), n=1..76); # Peter Luschny, Apr 06 2014
MATHEMATICA
JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n];
DedekindPsi[n_]:=JordanTotient[n, 2]/EulerPhi[n];
A063659[n_]:=DivisorSum[n, MoebiusMu[n/#]*DedekindPsi[#]&];
A130107[n_]:=DivisorSum[n, MoebiusMu[n/#]*A063659[#]&]:
Table[A130107[n], {n, 1, 30}]
(* Enrique Pérez Herrero, Apr 03 2014 *)
a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[ #2 == 1, # - 1, #2 == 2, #^2 - # - 1, True, #^(#2 - 3) (#^2 - 1) (# - 1)] &) @@@ FactorInteger[n]]; (* Michael Somos, Jun 17 2015 *)
PROG
(PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( e==1, p - 1, e==2, p^2 - p - 1, p^(e-3) * (p^2 - 1) * (p-1))))}; /* Michael Somos, Jun 17 2015 */
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Gary W. Adamson, May 07 2007
EXTENSIONS
More terms from Enrique Pérez Herrero, Apr 03 2014
STATUS
approved