login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Möbius transform of A063659.
1

%I #35 Feb 20 2022 14:37:58

%S 1,1,2,1,4,2,6,3,5,4,10,2,12,6,8,6,16,5,18,4,12,10,22,6,19,12,16,6,28,

%T 8,30,12,20,16,24,5,36,18,24,12,40,12,42,10,20,22,46,12,41,19,32,12,

%U 52,16,40,18,36,28,58,8,60,30,30,24,48,20,66,16,44,24

%N Möbius transform of A063659.

%C Double inverse Möbius transform of A130107 = A001615: (1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, ...).

%H Enrique Pérez Herrero, <a href="/A130107/b130107.txt">Table of n, a(n) for n = 1..2000</a>

%H Steven R. Finch, <a href="/A001616/a001616.pdf">Primitive Cusp Forms</a>, April 27, 2009. [Cached copy, with permission of the author]

%F A054525 * A063659, (1, 2, 3, 3, 5, 6, 7, 6, 8, 10, ...).

%F Multiplicative with a(p^e) = p-1 if e=1, a(p^e) = p^2-p-1 if e=2, a(p^e) = p^(e-3)*(p+1)*(p-1)^2. - _Enrique Pérez Herrero_, Apr 03 2014

%F Dirichlet g.f.: zeta(s-1) / (zeta(s) * zeta(2s)). - _Álvar Ibeas_, Mar 07 2015

%F Sum_{k=1..n} a(k) ~ 270*n^2 / Pi^6. - _Vaclav Kotesovec_, Jan 11 2019

%e G.f. = x + x^2 + 2*x^3 + x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 3*x^8 + 5*x^9 + ...

%p with(numtheory): A130107 := proc(n) local dp, mtdp, d, p;

%p dp := n -> n*mul((1+1/p), p=factorset(n));

%p mtdp := n -> add(mobius(n/d)*dp(d), d=divisors(n));

%p add(mobius(n/d)*mtdp(d), d=divisors(n)) end:

%p seq(A130107(n), n=1..76); # _Peter Luschny_, Apr 06 2014

%t JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];

%t DedekindPsi[n_]:=JordanTotient[n,2]/EulerPhi[n];

%t A063659[n_]:=DivisorSum[n,MoebiusMu[n/#]*DedekindPsi[#]&];

%t A130107[n_]:=DivisorSum[n,MoebiusMu[n/#]*A063659[#]&]:

%t Table[A130107[n],{n,1,30}]

%t (* _Enrique Pérez Herrero_, Apr 03 2014 *)

%t a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[ #2 == 1, # - 1, #2 == 2, #^2 - # - 1, True, #^(#2 - 3) (#^2 - 1) (# - 1)] &) @@@ FactorInteger[n]]; (* _Michael Somos_, Jun 17 2015 *)

%o (PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( e==1, p - 1, e==2, p^2 - p - 1, p^(e-3) * (p^2 - 1) * (p-1))))}; /* _Michael Somos_, Jun 17 2015 */

%Y Cf. A130107, A054525, A063659, A001615.

%K nonn,mult

%O 1,3

%A _Gary W. Adamson_, May 07 2007

%E More terms from _Enrique Pérez Herrero_, Apr 03 2014