login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129695
Laguerre transform of the Jacobsthal numbers.
1
0, 1, 5, 30, 221, 1936, 19587, 223924, 2846741, 39763152, 604552571, 9929914204, 175116159429, 3298466345656, 66063837734819, 1401515958032628, 31386104948551253, 739730654456796832, 18299498906318500683, 474007927812558263308, 12828197342517251892485
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} C(n,k)*n!*A001045(k)/k!.
a(n) = (n!/3)*( LaguerreL(n,-2) - LaguerreL(n,1) ).
Conjecture: a(n) +(-4*n+3)*a(n-1) +(6*n^2-16*n+9)*a(n-2) -(4*n-7)*(n-2)^2*a(n-3) +(n-2)^2*(n-3)^2*a(n-4)=0. - R. J. Mathar, Feb 23 2015
a(n) ~ n^(n + 1/4) / (3*2^(3/4) * exp(n-2*sqrt(2*n)+1)) * (1 + 67/(48*sqrt(2*n))). - Vaclav Kotesovec, Nov 13 2017
MAPLE
A129695 := proc(n)
add(binomial(n, k)*n!*A001045(k)/k!, k=0..n) ;
end proc: # R. J. Mathar, Feb 23 2015
MATHEMATICA
Table[n!*(LaguerreL[n, -2] - LaguerreL[n, 1])/3, {n, 0, 20}] (* Vaclav Kotesovec, Nov 13 2017 *)
a[n_] := Sum[n!*Binomial[n, k]*((2^k -(-1)^k)/3)/k!, {k, 0, n}]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, May 14 2018 *)
PROG
(PARI) for(n=0, 30, print1(sum(k=0, n, n!*binomial(n, k)*((2^k -(-1)^k)/3)/k!), ", ")) \\ G. C. Greubel, May 14 2018
(Magma) [(&+[Factorial(n)*Binomial(n, k)*((2^k -(-1)^k)/3)/Factorial(k) : k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 14 2018
CROSSREFS
Sequence in context: A058247 A137965 A371544 * A110521 A318920 A363908
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 01 2007
EXTENSIONS
Terms a(17) onward added by G. C. Greubel, May 14 2018
STATUS
approved