login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Laguerre transform of the Jacobsthal numbers.
1

%I #13 Sep 08 2022 08:45:30

%S 0,1,5,30,221,1936,19587,223924,2846741,39763152,604552571,9929914204,

%T 175116159429,3298466345656,66063837734819,1401515958032628,

%U 31386104948551253,739730654456796832,18299498906318500683,474007927812558263308,12828197342517251892485

%N Laguerre transform of the Jacobsthal numbers.

%H G. C. Greubel, <a href="/A129695/b129695.txt">Table of n, a(n) for n = 0..440</a>

%F a(n) = Sum_{k=0..n} C(n,k)*n!*A001045(k)/k!.

%F a(n) = (n!/3)*( LaguerreL(n,-2) - LaguerreL(n,1) ).

%F Conjecture: a(n) +(-4*n+3)*a(n-1) +(6*n^2-16*n+9)*a(n-2) -(4*n-7)*(n-2)^2*a(n-3) +(n-2)^2*(n-3)^2*a(n-4)=0. - _R. J. Mathar_, Feb 23 2015

%F a(n) ~ n^(n + 1/4) / (3*2^(3/4) * exp(n-2*sqrt(2*n)+1)) * (1 + 67/(48*sqrt(2*n))). - _Vaclav Kotesovec_, Nov 13 2017

%p A129695 := proc(n)

%p add(binomial(n,k)*n!*A001045(k)/k!,k=0..n) ;

%p end proc: # _R. J. Mathar_, Feb 23 2015

%t Table[n!*(LaguerreL[n, -2] - LaguerreL[n, 1])/3, {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 13 2017 *)

%t a[n_] := Sum[n!*Binomial[n,k]*((2^k -(-1)^k)/3)/k!, {k, 0, n}]; Table[a[n], {n, 0, 40}] (* _G. C. Greubel_, May 14 2018 *)

%o (PARI) for(n=0,30, print1(sum(k=0,n, n!*binomial(n,k)*((2^k -(-1)^k)/3)/k!), ", ")) \\ _G. C. Greubel_, May 14 2018

%o (Magma) [(&+[Factorial(n)*Binomial(n,k)*((2^k -(-1)^k)/3)/Factorial(k) : k in [0..n]]): n in [0..30]]; // _G. C. Greubel_, May 14 2018

%Y Cf. A001045, A105277.

%K easy,nonn

%O 0,3

%A _Paul Barry_, May 01 2007

%E Terms a(17) onward added by _G. C. Greubel_, May 14 2018