login
A129666
Expansion of unique cusp form of weight 4 level 7 in powers of q.
1
1, -1, -2, -7, 16, 2, -7, 15, -23, -16, -8, 14, 28, 7, -32, 41, 54, 23, -110, -112, 14, 8, 48, -30, 131, -28, 100, 49, -110, 32, 12, -161, 16, -54, -112, 161, -246, 110, -56, 240, 182, -14, 128, 56, -368, -48, 324, -82, 49, -131, -108, -196, -162, -100, -128
OFFSET
1,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
H. Rosson and G. Tornaria, Central values of quadratic twists for a modular form of weight 4, pp. 315-321 of J. B. Conrey et al., ed., Ranks of Elliptic Curves and Random Matrix Theory, Cambridge University Press, 2007.
LINKS
Mathieu Lemire and Kenneth S. Williams, Evaluation of two convolution sums involving the sum of divisors function, Bulletin of the Australian Mathematical Society, Volume 73, Issue 1 February 2006, pp. 107-115. See c7() p. 108.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * phi(-q)^3 * psi(q) * phi(-q^7)^3 * psi(q^7) + 4*q^2 * (phi(-q) * psi(q) * phi(-q^7) * psi(q^7))^2 in powers of q.
Expansion of ((eta(q) * eta(q^7))^3 + 4 * (eta(q^2) * eta(q^14))^3) * (eta(q) * eta(q^7))^2 / (eta(q^2) * eta(q^14)) in powers of q.
a(n) is multiplicative with a(7^e) = (-7)^e, a(p^e) = a(p) * a(p^(e-1)) - p^3 * a(p^(e-2)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (7 t)) = 49 (t/i)^4 f(t) where q = exp(2 Pi i t).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u^2 + 2*u*v + 16*u*w + 12*v^2 + 32*v*w + 256*w^2) * (-v^3 + 2*w*u*v + w*u^2 + 16*w^2*u) + 2*v^5.
Convolution of A002652 and A002656.
EXAMPLE
G.f. = q - q^2 - 2*q^3 - 7*q^4 + 16*q^5 + 2*q^6 - 7*q^7 + 15*q^8 - 23*q^9 - ...
MATHEMATICA
a[ n_] := With[ {A1 = QPochhammer[ q] QPochhammer[ q^7], A2 = QPochhammer[ q^2] QPochhammer[ q^14]}, SeriesCoefficient[ (A1^3 + 4 q A2^3) A1^2 / A2, {q, 0, n}]]; (* Michael Somos, Nov 11 2015 *)
PROG
(PARI) {a(n) = my(A, A1, A2); if( n<1, 0, n--; A = x * O(x^n); A1 = eta(x + A) * eta(x^7 + A); A2 = eta(x^2 + A) * eta(x^14 + A); polcoeff( (A1^3 + 4*x * A2^3) * A1^2 / A2, n))};
(Sage) CuspForms( Gamma0(7), 4, prec=55).0; # Michael Somos, May 28 2013
(Magma) Basis( CuspForms( Gamma0(7), 4), 56)[1]; /* Michael Somos, Nov 11 2015 */
CROSSREFS
Sequence in context: A047694 A338399 A262016 * A288675 A135781 A233580
KEYWORD
sign,mult,changed
AUTHOR
Michael Somos, Apr 27 2007
STATUS
approved