login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129508
Numbers n such that 3 and 5 do not divide binomial(2n,n).
6
0, 1, 10, 12, 27, 30, 31, 36, 37, 252, 255, 256, 280, 282, 756, 757, 760, 810, 811, 3160, 3162, 3186, 3187, 3250, 3252, 3276, 3277, 3280, 6561, 6562, 6885, 6886, 6912, 6925, 7536, 7537, 7560, 7561, 7626, 7627, 7650, 7651, 19686, 19687, 20007, 20010, 20011
OFFSET
1,3
COMMENTS
The Erdos paper proves that for any two odd primes p and q, there are an infinite number of n for which gcd(p*q,binomial(2n,n))=1; i.e., p and q do not divide binomial(2n,n).
LINKS
P. Erdos, R. L. Graham, I. Z. Russa and E. G. Straus, On the prime factors of C(2n,n), Math. Comp. 29 (1975), 83-92.
FORMULA
Intersection of A005836 and A037453.
MATHEMATICA
lim=10000; Intersection[Table[FromDigits[IntegerDigits[k, 2], 3], {k, 0, lim}], Table[FromDigits[IntegerDigits[k, 3], 5], {k, 0, lim}]]
PROG
(PARI) valp(n, p)=my(s); while(n\=p, s+=n); s
is(n)=valp(2*n, 3)==2*valp(n, 3) && valp(2*n, 5)==2*valp(n, 5) \\ Charles R Greathouse IV, Feb 03 2016
CROSSREFS
Cf. A030979 (n such that 3, 5 and 7 do not divide binomial(2n, n)).
Sequence in context: A108901 A372488 A073083 * A015728 A080470 A087217
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 18 2007
STATUS
approved