OFFSET
1,3
COMMENTS
The Erdos paper proves that for any two odd primes p and q, there are an infinite number of n for which gcd(p*q,binomial(2n,n))=1; i.e., p and q do not divide binomial(2n,n).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
P. Erdos, R. L. Graham, I. Z. Russa and E. G. Straus, On the prime factors of C(2n,n), Math. Comp. 29 (1975), 83-92.
MATHEMATICA
lim=10000; Intersection[Table[FromDigits[IntegerDigits[k, 2], 3], {k, 0, lim}], Table[FromDigits[IntegerDigits[k, 3], 5], {k, 0, lim}]]
PROG
(PARI) valp(n, p)=my(s); while(n\=p, s+=n); s
is(n)=valp(2*n, 3)==2*valp(n, 3) && valp(2*n, 5)==2*valp(n, 5) \\ Charles R Greathouse IV, Feb 03 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 18 2007
STATUS
approved