login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129506 Number of partitions of a {2n-1}-set into n nonempty subsets. 7
1, 3, 25, 350, 6951, 179487, 5715424, 216627840, 9528822303, 477297033785, 26826851689001, 1672162773483930, 114485073343744260, 8541149231801585700, 689692892575539953400, 59932861644880019603520, 5576731051262006158950735, 553234633385550257808059085 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

B^{-1}(x) = Sum_{n>0} a(n)/(2*n-1)!*(n-1)! x^n is inverse function for x*B(x), where B(x) is g.f. for Bernoulli number (see A027641). - Vladimir Kruchinin, Jan 19 2012

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..200

D. Kruchinin and V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, Journal of Integer Sequences, Vol. 15 (2012), article 12.9.3.

FORMULA

Central Stirling numbers of the second kind: a(n) = A008277(2n-1,n) for n >= 1.

G.f.: Sum_{n>=1} n^(2*n-1) * exp(-n^2*x) * x^n / n!, an integer series. - Paul D. Hanna, Oct 15 2012

a(n) = 1/n! * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * k^(2*n-1). - Paul D. Hanna, Oct 15 2012

a(n) = ((2*n-1)*((sum(i=1..n-2, (stirling2(2*i-1,i)*C(2*n-2,2*i-1)*stirling2(2*(n-i)-1,n-i-1))/((n-i-1)*C(n-1,i))))+(n-1)*stirling2(2*n-3,n-1) +stirling2(2*n-2,n-1)))/n. - Vladimir Kruchinin, Feb 28 2013

a(n-1) = sum(j=0..n, binomial(2*n,j)*stirling2(2*n-j,n)). - Vladimir Kruchinin, Jun 14 2013

a(n) ~ 2^(2*n-3/2) * n^(n-3/2) * (2-c)^(1-n) / (sqrt(Pi*(1-c)) * exp(n) * c^n), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... = 2*A106533. - Vaclav Kotesovec, Dec 15 2013

a(n) = A258170(2*n-1,n). - Alois P. Heinz, Mar 16 2018

EXAMPLE

G.f.: A(x) = x + 3*x^2 + 25*x^3 + 350*x^4 + 6951*x^5 + 179487*x^6 + ... where A(x) = 1^1*x*exp(-1^2*x) + 2^3*exp(-2^2*x)*x^2/2! + 3^5*exp(-3^2*x)*x^3/3! + 4^7*exp(-4^2*x)*x^4/4! + 5^9*exp(-5^2*x)*x^5/5! + ... forms a power series in x with integer coefficients. - Paul D. Hanna, Oct 15 2012

MAPLE

a:= n-> Stirling2(2*n-1, n):

seq(a(n), n=1..25);  # Alois P. Heinz, Dec 15 2013

MATHEMATICA

a[n_] := Sum[ Binomial[2*n - 2, j]*StirlingS2[2*n - j - 2, n-1], {j, 0, n-1}]; Table[a[n], {n, 1, 18}] (* Jean-Fran├žois Alcover, Jun 14 2013, after Vladimir Kruchinin *)

Table[StirlingS2[2*n-1, n], {n, 1, 20}] (* Vaclav Kotesovec, Dec 15 2013 *)

PROG

(PARI) a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^n)), n-1)

(PARI) vector(66, n, abs( stirling(2*n-1, n, 2) ) ) /* Joerg Arndt, Jun 09 2012 */

(PARI) {a(n)=1/n!*sum(k=0, n, (-1)^(n-k)*binomial(n, k)*k^(2*n-1))} \\ Paul D. Hanna, Oct 15 2012

(PARI) {a(n)=polcoeff(sum(m=1, n, m^(2*m-1)*x^m*exp(-m^2*x+x*O(x^n))/m!), n)}

for(n=1, 20, print1(a(n), ", "))

(Maxima) a(n):=((2*n-1)*((sum((stirling2(2*i-1, i)*binomial(2*n-2, 2*i-1)*stirling2(2*(n-i)-1, n-i-1))/((n-i-1)*binomial(n-1, i)), i, 1, n-2))+(n-1)* stirling2(2*n-3, n-1)+stirling2(2*n-2, n-1)))/(n);

  makelist(a(n), n, 1, 10);  \\ Vladimir Kruchinin, Feb 28 2013

CROSSREFS

Cf. A008277, A129505, A217900, A217910, A217913, A258170.

Sequence in context: A085527 A093360 A161629 * A143139 A231637 A295765

Adjacent sequences:  A129503 A129504 A129505 * A129507 A129508 A129509

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Apr 18 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 22:42 EST 2019. Contains 329987 sequences. (Running on oeis4.)