login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129442
Expansion of c(x)*c(x*c(x)) where c(x) is the g.f. of A000108.
8
1, 2, 6, 21, 80, 322, 1348, 5814, 25674, 115566, 528528, 2449746, 11485068, 54377288, 259663576, 1249249981, 6049846848, 29469261934, 144293491564, 709806846980, 3506278661820, 17385618278700, 86500622296800
OFFSET
0,2
COMMENTS
The sequence b(n) = [0,1,2,6,21,80,322,1348,...] for n >= 0 is the Catalan transform of Catalan numbers C(n-1), with C(-1)=0; Sum_{k=0..n} A106566(n,k) * A000108(k-1) = b(n).
A121988 is an essentially identical sequence. - R. J. Mathar, Jun 13 2008
Catalan transform of A014137. - R. J. Mathar, Nov 11 2008
LINKS
Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
FORMULA
a(n-1) = (1/n)*Sum_{k=1..n} binomial(2*n-k-1, n-1)*binomial(2*k-2, k-1).
G.f.: (1-sqrt(2*sqrt(1-4*x)-1))/(2*x). - Emeric Deutsch, Jun 20 2007 Corrected by Stefan Forcey (sforcey(AT)tnstate.edu), Aug 02 2007
From Vaclav Kotesovec, Oct 20 2012: (Start)
Recurrence: 3*n*(n+1)*a(n) = 14*n*(2*n-1)*a(n-1) - 4*(4*n-5)*(4*n-3)*a(n-2).
a(n) ~ 2^(4*n+3/2)/(3^(n+1/2)*sqrt(Pi)*n^(3/2)). (End)
0 = +a(n)*(+a(n+1)*(+262144*a(n+2) -275968*a(n+3) +52608*a(n+4)) +a(n+2)*(-50176*a(n+2) +107680*a(n+3) -27930*a(n+4)) +a(n+3)*(-6006*a(n+3) +2574*a(n+4))) +a(n+1)*(+a(n+1)*(-17920*a(n+2) +21952*a(n+3) -4494*a(n+4)) +a(n+2)*(+5152*a(n+2) -15820*a(n+3) +4611*a(n+4)) +a(n+3)*(+1470*a(n+3) -630*a(n+4))) +a(n+2)*(+a(n+2)*(+42*a(n+2) +129*a(n+3) -63*a(n+4)) +a(n+3)*(-63*a(n+3) +27*a(n+4))) for n>=0. - Michael Somos, May 28 2023
From Seiichi Manyama, Jan 10 2023: (Start)
G.f.: (1/x) * Series_Reversion( x * (1-x) * (1-x+x^2) ).
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+k,k) * binomial(3*n-k+1,n-2*k). (End)
EXAMPLE
G.f. = 1 + 2*x + 6*x^2 + 21*x^3 + 80*x^4 + 322*x^5 + 1349*x^6 + ... - Michael Somos, May 28 2023
MAPLE
c := proc (x) options operator, arrow; (1/2)*(1-sqrt(1-4*x))/x end proc; G := simplify(c(x)*c(x*c(x))); Gser := series(G, x = 0, 28); seq(coeff(Gser, x, n), n = 0 .. 24) # Emeric Deutsch, Jun 20 2007
MATHEMATICA
a[n_]:= Sum[ Binomial[2n -k-1, n-1]*Binomial[2k-2, k-1], {k, n}]/n;
Array[a, 23] (* Robert G. Wilson v, Jul 18 2007 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(2*Sqrt(1-4*x)-1))/(2*x) )); // G. C. Greubel, Feb 06 2024
(SageMath)
def A129442_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-sqrt(2*sqrt(1-4*x)-1))/(2*x) ).list()
A129442_list(40) # G. C. Greubel, Feb 06 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Philippe Deléham, May 28 2007, Jun 20 2007
EXTENSIONS
More terms from Emeric Deutsch, Jun 20 2007
STATUS
approved