login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129334
Triangle T(n,k) read by rows: inverse of the matrix PE = exp(P)/exp(1) given in A011971.
1
1, -1, 1, 0, -2, 1, 1, 0, -3, 1, 1, 4, 0, -4, 1, -2, 5, 10, 0, -5, 1, -9, -12, 15, 20, 0, -6, 1, -9, -63, -42, 35, 35, 0, -7, 1, 50, -72, -252, -112, 70, 56, 0, -8, 1, 267, 450, -324, -756, -252, 126, 84, 0, -9, 1, 413, 2670, 2250, -1080, -1890, -504, 210, 120, 0, -10, 1
OFFSET
0,5
COMMENTS
The structure of the triangle is A(r,c) = A000587(1+(r-c))*binomial(r-1,c-1) where row index r and column-index c start at 1.
Row polynomials defined recursively: P(0,x) = 1, P(n+1,x) = x*P(n,x) - P(n,x+1). The polynomials appear to be irreducible. Polynomials evaluated at x = c give sequences with e.g.f. exp(1 - cx - exp(-x)).
LINKS
S. de Wannemacker, T. Laffey and R. Osburn, On a conjecture of Wilf, arXiv:math/0608085 [math.NT], 2006-2007.
FORMULA
Let P be the lower-triangular Pascal-matrix, PE = exp(P-I) a matrix-exponential in exact integer arithmetic (or PE = lim exp(P)/exp(1) as limit of the exponential) then A = PE^-1 and a(n) = A(n, read sequentially). - Gottfried Helms, Apr 08 2007
T(n, k) = Sum_{j=0..n} (-1)^(j-k)*A094816(j, k)*Stirling2(n, j). - Mélika Tebni, Apr 15 2022
EXAMPLE
Triangle starts:
[0] 1;
[1] -1, 1;
[2] 0, -2, 1;
[3] 1, 0, -3, 1;
[4] 1, 4, 0, -4, 1;
[5] -2, 5, 10, 0, -5, 1;
[6] -9, -12, 15, 20, 0, -6, 1;
[7] -9, -63, -42, 35, 35, 0, -7, 1;
[8] 50, -72, -252, -112, 70, 56, 0, -8, 1;
[9] 267, 450, -324, -756, -252, 126, 84, 0, -9, 1;
MAPLE
P := proc(n, x) option remember; if n=0 then 1 else
x*P(n-1, x) - P(n-1, x+1) fi end:
aRow := n -> seq(coeff(P(n, x), x, k), k = 0..n):
seq(aRow(n), n = 0..10); # Peter Luschny, Apr 15 2022
CROSSREFS
First column is A000587 (Uppuluri Carpenter numbers) which is also the negative of the row sums (=P(n, 1)). Polynomials evaluated at 2 are A074051, at -1 A109747.
Cf. A094816.
Sequence in context: A100218 A098599 A326925 * A116399 A116405 A281048
KEYWORD
easy,tabl,sign
AUTHOR
Gottfried Helms, Apr 08 2007
EXTENSIONS
Edited by Ralf Stephan, May 12 2007
STATUS
approved