login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128935 a(n) = Fibonacci(5^n) / 5^n. 2
1, 1, 3001, 475400918060101145703001, 29642179764875707696452732234250095350341524541114277856812964100763567848899514572925690068090872073476146381237687662210078001 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Numbers k such that k divides Fibonacci(k) are listed in A023172.
All powers of 5 belong to A023172.
5^n divides Fibonacci(5^n).
a(n) == 1 (mod 1000).
{a(n+1)/a(n)} = {1, 3001, 158414167964045700001, 62351961552434956321060201440347372028390478647963811251289490034177804212636326088548682319305439375001, ...}.
LINKS
FORMULA
a(n) = Fibonacci(5^n) / 5^n.
a(n+1) = 5^(4*n+1)*a(n)^5 - 5^(2*n+1)*a(n)^3 + a(n) with a(0) = 1. - Peter Bala, Nov 24 2022
MAPLE
a := proc(n) option remember; if n = 0 then 1 else 5^(4*n-3)*a(n-1)^5 - 5^(2*n-1)*a(n-1)^3 + a(n-1) end if; end proc: seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
MATHEMATICA
Table[ Fibonacci[ 5^n ] / 5^n, {n, 0, 4} ]
CROSSREFS
Sequence in context: A269885 A269764 A156655 * A145304 A094336 A100896
KEYWORD
nonn,easy
AUTHOR
Alexander Adamchuk, May 11 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 14 13:51 EDT 2024. Contains 374318 sequences. (Running on oeis4.)