The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A128925 Primes p such that at least one of the two numbers p^2 - 6, p^2 + 6 is prime. 1
 3, 5, 7, 11, 13, 17, 19, 23, 31, 47, 53, 61, 67, 73, 79, 83, 89, 97, 107, 109, 113, 131, 151, 167, 193, 197, 199, 263, 269, 293, 317, 331, 367, 373, 383, 401, 431, 457, 463, 467, 487, 503, 557, 569, 593, 607, 643, 647, 673, 677, 683, 709, 773, 787, 797, 823, 827 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS p = 5 is the only term for which both p^2 - 6 and p^2 + 6 are primes. LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE 5^2 - 6 = 19 is prime (just as is 5^2+6 = 31), hence 5 is in the sequence. 79^2 + 6 = 6241 + 6 = 6247 is prime, hence 79 is in the sequence. 83^2 - 6 = 6889 - 6 = 6883 is prime, hence 83 is in the sequence. MAPLE a:=proc(n) if isprime(ithprime(n)^2+6)=true or isprime(ithprime(n)^2-6)=true then ithprime(n) else fi end: seq(a(n), n=1..200); # Emeric Deutsch, May 05 2007 MATHEMATICA Select[ Prime@ Range[2, 145], PrimeQ[ #^2 - 6] || PrimeQ[ #^2 + 6] &] (* Robert G. Wilson v, May 01 2007 *) PROG (PARI) {forprime(p=2, 830, s=p^2; if(isprime(s-6)||isprime(s+6), print1(p, ", ")))} /* Klaus Brockhaus, May 06 2007 */ CROSSREFS Cf. A001248 (squares of primes). Sequence in context: A338132 A120334 A000978 * A204142 A131261 A100276 Adjacent sequences:  A128922 A128923 A128924 * A128926 A128927 A128928 KEYWORD nonn AUTHOR J. M. Bergot, Apr 25 2007 EXTENSIONS Edited and extended by Robert G. Wilson v, Klaus Brockhaus and Emeric Deutsch, May 01 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 10 15:15 EDT 2021. Contains 343773 sequences. (Running on oeis4.)