login
A128446
Quotients A122000(p-1) / (2^p - 1), where p = prime(n) for n > 1.
0
1, 882850585445281, 28084773172609134470952326813135521948919663474715912134590894817085103016117634792155856629828598766188378241
OFFSET
2,2
COMMENTS
A014566(n) = n^n + 1 is a Sierpinski Number of the First Kind.
A014566(2^n - 1) is divisible by 2^n.
A122000(n) = ((2^n - 1)^(2^n - 1) + 1) / 2^n = A014566(2^n - 1) / 2^n = A081216(2^n - 1).
LINKS
Eric Weisstein's World of Mathematics, Sierpinski Number of the First Kind
FORMULA
a(n) = ((2^(prime(n)-1) - 1)^(2^(prime(n)-1)-1) + 1)/(2^(prime(n)-1)*(2^prime(n)-1)).
CROSSREFS
KEYWORD
bref,nonn
AUTHOR
Alexander Adamchuk, Mar 03 2007
STATUS
approved