OFFSET
0,3
COMMENTS
The number of vertices (Bressoud) is Product_{j=0..n-1}(3j+1)!/(n+j)!.
REFERENCES
D. M. Bressoud, Proofs and confirmations: the story of the alternating sign matrix conjecture, MAA Spectrum, 1999.
LINKS
Jessica Striker, The alternating sign matrix polytope, arXiv:0705.0998 [math.CO], 2007-2009.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = 4*((n-2)^2 + 1) for n >= 3.
From Harvey P. Dale, Mar 05 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n > 5.
G.f.: (2*x^5+x^4+4*x^3+2*x^2-4*x+1)/(1-x)^3. (End)
MATHEMATICA
Table[4((n-2)^2+1), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {20, 8, 4}, 50] (* Harvey P. Dale, Mar 05 2012 *)
PROG
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, -3, 3]^n*[20; 8; 4])[1, 1] \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 09 2007
EXTENSIONS
More terms from Harvey P. Dale, Mar 05 2012
Initial 3 terms and formulas corrected by Ludovic Schwob, Feb 14 2024
STATUS
approved