login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128213
Expansion of (1-x+2x^2-2x^3)/(1-x+x^2)^2.
1
1, 1, 1, -1, -4, -4, 1, 7, 7, -1, -10, -10, 1, 13, 13, -1, -16, -16, 1, 19, 19, -1, -22, -22, 1, 25, 25, -1, -28, -28, 1, 31, 31, -1, -34, -34, 1, 37, 37, -1, -40, -40, 1, 43, 43, -1, -46, -46, 1, 49, 49, -1, -52, -52, 1, 55, 55, -1, -58, -58, 1, 61, 61, -1
OFFSET
0,5
COMMENTS
a(n+1) is the Hankel transform of {1,0,1,3,9,28,90,297,1001,3432,11934,...}, cf. A000245.
Binomial transform of A128214.
a(n+2) is the Hankel transform of A014138. - Paul Barry, Mar 15 2008
FORMULA
a(n) = cos(Pi*n/3) + (2n/sqrt(3)-1/sqrt(3))*sin(Pi*n/3).
a(n) = y(n,n), where y(m+1,n) = y(m,n) - y(m-1,n), with y(0,n)=1 and y(1,n)=n. - Benedict W. J. Irwin, Nov 05 2016
MATHEMATICA
Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == y[m] - y[m - 1], y[0] == 1, y[1] == n}]][n], {n, 0, 100}] (* Benedict W. J. Irwin, Nov 05 2016 *)
PROG
(PARI) Vec((1-x+2*x^2-2*x^3)/(1-x+x^2)^2 + O(x^100)) \\ Michel Marcus, May 31 2014
CROSSREFS
Sequence in context: A337191 A341863 A047213 * A171716 A211788 A318732
KEYWORD
easy,sign
AUTHOR
Paul Barry, Feb 19 2007
STATUS
approved