OFFSET
0,5
COMMENTS
a(n+1) is the Hankel transform of {1,0,1,3,9,28,90,297,1001,3432,11934,...}, cf. A000245.
Binomial transform of A128214.
a(n+2) is the Hankel transform of A014138. - Paul Barry, Mar 15 2008
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,-3,2,-1).
FORMULA
a(n) = cos(Pi*n/3) + (2n/sqrt(3)-1/sqrt(3))*sin(Pi*n/3).
a(n) = y(n,n), where y(m+1,n) = y(m,n) - y(m-1,n), with y(0,n)=1 and y(1,n)=n. - Benedict W. J. Irwin, Nov 05 2016
MATHEMATICA
Table[DifferenceRoot[Function[{y, m}, {y[1 + m] == y[m] - y[m - 1], y[0] == 1, y[1] == n}]][n], {n, 0, 100}] (* Benedict W. J. Irwin, Nov 05 2016 *)
PROG
(PARI) Vec((1-x+2*x^2-2*x^3)/(1-x+x^2)^2 + O(x^100)) \\ Michel Marcus, May 31 2014
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Feb 19 2007
STATUS
approved