login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127980
a(n) = (n + 2/3)*2^(n-1) - 1/2 - (-1)^(n-1)*(1/6).
6
1, 5, 14, 37, 90, 213, 490, 1109, 2474, 5461, 11946, 25941, 55978, 120149, 256682, 546133, 1157802, 2446677, 5155498, 10835285, 22719146, 47535445, 99265194, 206918997, 430615210, 894784853, 1856678570, 3847574869, 7963585194
OFFSET
1,2
LINKS
W. Bosma, Signed bits and fast exponentiation, Journal de Théorie des Nombres de Bordeaux, Vol. 13, Fasc. 1 (2001), p. 38 (Proposition 7).
FORMULA
G.f.: x*(1+x-3*x^2)/((1-x)*(1+x)*(1-2*x)^2). - Colin Barker, Apr 02 2012
E.g.f.: ((1 + 3*x)*cosh(2*x) - 2*sinh(x) + cosh(x)*((2 + 6*x)*sinh(x) - 1))/3. - Stefano Spezia, May 25 2023
MATHEMATICA
Table[(n+2/3)2^(n-1) - 1/2 -(-1)^(n-1)*(1/6), {n, 1, 50}]
LinearRecurrence[{4, -3, -4, 4}, {1, 5, 14, 37}, 50] (* G. C. Greubel, May 08 2018 *)
PROG
(PARI) x='x+O('x^30); Vec(x*(1+x-3*x^2)/((1-x)*(1+x)*(1-2*x)^2)) \\ G. C. Greubel, May 08 2018
(Magma) I:=[1, 5, 14, 37]; [n le 4 select I[n] else 4*Self(n-1)-3*Self(n-2)-4*Self(n-3)+4*Self(n-4): n in [1..30]]; // G. C. Greubel, May 08 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Feb 09 2007
STATUS
approved