login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n + 2/3)*2^(n-1) - 1/2 - (-1)^(n-1)*(1/6).
6

%I #23 May 25 2023 16:14:25

%S 1,5,14,37,90,213,490,1109,2474,5461,11946,25941,55978,120149,256682,

%T 546133,1157802,2446677,5155498,10835285,22719146,47535445,99265194,

%U 206918997,430615210,894784853,1856678570,3847574869,7963585194

%N a(n) = (n + 2/3)*2^(n-1) - 1/2 - (-1)^(n-1)*(1/6).

%H G. C. Greubel, <a href="/A127980/b127980.txt">Table of n, a(n) for n = 1..1000</a>

%H W. Bosma, <a href="http://dx.doi.org/10.5802/jtnb.301">Signed bits and fast exponentiation</a>, Journal de Théorie des Nombres de Bordeaux, Vol. 13, Fasc. 1 (2001), p. 38 (Proposition 7).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-3,-4,4).

%F G.f.: x*(1+x-3*x^2)/((1-x)*(1+x)*(1-2*x)^2). - _Colin Barker_, Apr 02 2012

%F E.g.f.: ((1 + 3*x)*cosh(2*x) - 2*sinh(x) + cosh(x)*((2 + 6*x)*sinh(x) - 1))/3. - _Stefano Spezia_, May 25 2023

%t Table[(n+2/3)2^(n-1) - 1/2 -(-1)^(n-1)*(1/6), {n, 1, 50}]

%t LinearRecurrence[{4,-3,-4,4}, {1,5,14,37}, 50] (* _G. C. Greubel_, May 08 2018 *)

%o (PARI) x='x+O('x^30); Vec(x*(1+x-3*x^2)/((1-x)*(1+x)*(1-2*x)^2)) \\ _G. C. Greubel_, May 08 2018

%o (Magma) I:=[1,5,14,37]; [n le 4 select I[n] else 4*Self(n-1)-3*Self(n-2)-4*Self(n-3)+4*Self(n-4): n in [1..30]]; // _G. C. Greubel_, May 08 2018

%Y Cf. A073371, A127976, A127978, A127979, A073371.

%K nonn,easy

%O 1,2

%A _Artur Jasinski_, Feb 09 2007