login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127749
Inverse of number triangle A(n,k) = 1/(2n+1) if k <= n <= 2k, 0 otherwise.
2
1, 0, 3, 0, -3, 5, 0, 3, -5, 7, 0, 0, 0, -7, 9, 0, -3, 5, 0, -9, 11, 0, 0, 0, 0, 0, -11, 13, 0, 3, -5, 7, 0, 0, -13, 15, 0, 0, 0, 0, 0, 0, 0, -15, 17, 0, 0, 0, -7, 9, 0, 0, 0, -17, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, -19, 21, 0, -3, 5
OFFSET
0,3
COMMENTS
Conjectures: row sums modulo 2 are the Fredholm-Rueppel sequence A036987; row sums of triangle modulo 2 are A111982. Row sums are A127750.
The first conjecture is equivalent to the row sums conjecture in A111967. - R. J. Mathar, Apr 21 2021
FORMULA
T(n,k) = (2*k+1)*A111967(n,k). - R. J. Mathar, Apr 21 2021
EXAMPLE
Triangle begins
1;
0, 3;
0, -3, 5;
0, 3, -5, 7;
0, 0, 0, -7, 9;
0, -3, 5, 0, -9, 11;
0, 0, 0, 0, 0, -11, 13;
0, 3, -5, 7, 0, 0, -13, 15;
0, 0, 0, 0, 0, 0, 0, -15, 17;
0, 0, 0, -7, 9, 0, 0, 0, -17, 19;
0, 0, 0, 0, 0, 0, 0, 0, 0, -19, 21;
0, -3, 5, 0, -9, 11, 0, 0, 0, 0, -21, 23;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -23, 25;
Inverse of triangle
1;
0, 1/3;
0, 1/5, 1/5;
0, 0, 1/7, 1/7;
0, 0, 1/9, 1/9, 1/9;
0, 0, 0, 1/11, 1/11, 1/11;
0, 0, 0, 1/13, 1/13, 1/13, 1/13;
0, 0, 0, 0, 1/15, 1/15, 1/15, 1/15;
0, 0, 0, 0, 1/17, 1/17, 1/17, 1/17, 1/17;
0, 0, 0, 0, 0, 1/19, 1/19, 1/19, 1/19, 1/19;
0, 0, 0, 0, 0, 1/21, 1/21, 1/21, 1/21, 1/21, 1/21;
MAPLE
A127749 := proc(n, k)
option remember ;
if k > n then
0 ;
elif k = n then
2*n+1 ;
else
-(2*k+1)*add( procname(n, i)/(2*i+1), i=k+1..min(n, 2*k)) ;
end if;
end proc:
seq(seq( A127749(n, k), k=0..n), n=0..20) ; # R. J. Mathar, Feb 09 2021
MATHEMATICA
nmax = 10;
A[n_, k_] := If[k <= n <= 2k, 1/(2n+1), 0];
invA = Inverse[Table[A[n, k], {n, 0, nmax}, {k, 0, nmax}]];
T[n_, k_] := invA[[n+1, k+1]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 05 2020 *)
CROSSREFS
Cf. A111967.
Sequence in context: A060858 A222690 A222794 * A198431 A138188 A229704
KEYWORD
sign,tabl
AUTHOR
Paul Barry, Jan 28 2007
STATUS
approved