login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Inverse of number triangle A(n,k) = 1/(2n+1) if k <= n <= 2k, 0 otherwise.
2

%I #13 Apr 21 2021 11:33:18

%S 1,0,3,0,-3,5,0,3,-5,7,0,0,0,-7,9,0,-3,5,0,-9,11,0,0,0,0,0,-11,13,0,3,

%T -5,7,0,0,-13,15,0,0,0,0,0,0,0,-15,17,0,0,0,-7,9,0,0,0,-17,19,0,0,0,0,

%U 0,0,0,0,0,-19,21,0,-3,5

%N Inverse of number triangle A(n,k) = 1/(2n+1) if k <= n <= 2k, 0 otherwise.

%C Conjectures: row sums modulo 2 are the Fredholm-Rueppel sequence A036987; row sums of triangle modulo 2 are A111982. Row sums are A127750.

%C The first conjecture is equivalent to the row sums conjecture in A111967. - _R. J. Mathar_, Apr 21 2021

%F T(n,k) = (2*k+1)*A111967(n,k). - _R. J. Mathar_, Apr 21 2021

%e Triangle begins

%e 1;

%e 0, 3;

%e 0, -3, 5;

%e 0, 3, -5, 7;

%e 0, 0, 0, -7, 9;

%e 0, -3, 5, 0, -9, 11;

%e 0, 0, 0, 0, 0, -11, 13;

%e 0, 3, -5, 7, 0, 0, -13, 15;

%e 0, 0, 0, 0, 0, 0, 0, -15, 17;

%e 0, 0, 0, -7, 9, 0, 0, 0, -17, 19;

%e 0, 0, 0, 0, 0, 0, 0, 0, 0, -19, 21;

%e 0, -3, 5, 0, -9, 11, 0, 0, 0, 0, -21, 23;

%e 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -23, 25;

%e Inverse of triangle

%e 1;

%e 0, 1/3;

%e 0, 1/5, 1/5;

%e 0, 0, 1/7, 1/7;

%e 0, 0, 1/9, 1/9, 1/9;

%e 0, 0, 0, 1/11, 1/11, 1/11;

%e 0, 0, 0, 1/13, 1/13, 1/13, 1/13;

%e 0, 0, 0, 0, 1/15, 1/15, 1/15, 1/15;

%e 0, 0, 0, 0, 1/17, 1/17, 1/17, 1/17, 1/17;

%e 0, 0, 0, 0, 0, 1/19, 1/19, 1/19, 1/19, 1/19;

%e 0, 0, 0, 0, 0, 1/21, 1/21, 1/21, 1/21, 1/21, 1/21;

%p A127749 := proc(n,k)

%p option remember ;

%p if k > n then

%p 0 ;

%p elif k = n then

%p 2*n+1 ;

%p else

%p -(2*k+1)*add( procname(n,i)/(2*i+1),i=k+1..min(n,2*k)) ;

%p end if;

%p end proc:

%p seq(seq( A127749(n,k),k=0..n),n=0..20) ; # _R. J. Mathar_, Feb 09 2021

%t nmax = 10;

%t A[n_, k_] := If[k <= n <= 2k, 1/(2n+1), 0];

%t invA = Inverse[Table[A[n, k], {n, 0, nmax}, {k, 0, nmax}]];

%t T[n_, k_] := invA[[n+1, k+1]];

%t Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Oct 05 2020 *)

%Y Cf. A111967.

%K sign,tabl

%O 0,3

%A _Paul Barry_, Jan 28 2007