login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127321
First 4-dimensional hyper-tetrahedral coordinate; repeat m C(m+3,3) times; 4-D analog of A056556.
8
0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
0,6
COMMENTS
If {(W,X,Y,Z)} are 4-tuples of nonnegative integers with W>=X>=Y>=Z ordered by W, X, Y and Z, then W=A127321(n), X=A127322(n), Y=A127323(n) and Z=A127324(n). These sequences are the four-dimensional analogs of the three-dimensional A056556, A056557 and A056558.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10625, showing all instances of m=0..21.
FORMULA
For W>=0, a(A000332(W+3)) = a(A000332(W+4)-1) = W A127321(n+1) = A127321(n)==A127324(n) ? A127321(n)+1 : A127321(n).
a(n) = floor(sqrt(5/4 + sqrt(24*n+1)) - 3/2). - Ridouane Oudra, Oct 21 2021
a(n) = m-2 if n<binomial(m+2,4) and a(n) = m-1 otherwise where m = floor((24*(n+2))^(1/4)). # Chai Wah Wu, Nov 04 2024
EXAMPLE
a(23)=3 because a(A000332(3+3)) = a(A000332(3+4)-1) = 3, so a(15) = a(34) = 3.
n W,X,Y,Z
0 0,0,0,0
1 1,0,0,0
2 1,1,0,0
3 1,1,1,0
4 1,1,1,1
5 2,0,0,0
6 2,1,0,0
7 2,1,1,0
8 2,1,1,1
9 2,2,0,0
10 2,2,1,0
11 2,2,1,1
12 2,2,2,0
13 2,2,2,1
14 2,2,2,2
15 3,0,0,0
16 3,1,0,0
17 3,1,1,0
18 3,1,1,1
19 3,2,0,0
20 3,2,1,0
21 3,2,1,1
22 3,2,2,0
23 3,2,2,1
MATHEMATICA
Array[Floor[Sqrt[5/4 + Sqrt[24*# + 1]] - 3/2] &, 105, 0] (* or *)
Flatten@ Array[ConstantArray[#, Binomial[# + 3, 3]] &, 6, 0] (* Michael De Vlieger, Oct 21 2021 *)
PROG
(Python)
from math import comb
from sympy import integer_nthroot
def A127321(n): return (m:=integer_nthroot(24*(n+2), 4)[0]-2)+(n>=comb(m+4, 4)) # Chai Wah Wu, Nov 04 2024
KEYWORD
nonn
AUTHOR
Graeme McRae, Jan 10 2007
EXTENSIONS
Name corrected by Ridouane Oudra, Oct 21 2021
STATUS
approved