login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A127321
First 4-dimensional hyper-tetrahedral coordinate; repeat m C(m+3,3) times; 4-D analog of A056556.
8
0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
0,6
COMMENTS
If {(W,X,Y,Z)} are 4-tuples of nonnegative integers with W>=X>=Y>=Z ordered by W, X, Y and Z, then W=A127321(n), X=A127322(n), Y=A127323(n) and Z=A127324(n). These sequences are the four-dimensional analogs of the three-dimensional A056556, A056557 and A056558.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..10625, showing all instances of m=0..21.
FORMULA
For W>=0, a(A000332(W+3)) = a(A000332(W+4)-1) = W A127321(n+1) = A127321(n)==A127324(n) ? A127321(n)+1 : A127321(n).
a(n) = floor(sqrt(5/4 + sqrt(24*n+1)) - 3/2). - Ridouane Oudra, Oct 21 2021
a(n) = m-2 if n<binomial(m+2,4) and a(n) = m-1 otherwise where m = floor((24*(n+2))^(1/4)). # Chai Wah Wu, Nov 04 2024
EXAMPLE
a(23)=3 because a(A000332(3+3)) = a(A000332(3+4)-1) = 3, so a(15) = a(34) = 3.
n W,X,Y,Z
0 0,0,0,0
1 1,0,0,0
2 1,1,0,0
3 1,1,1,0
4 1,1,1,1
5 2,0,0,0
6 2,1,0,0
7 2,1,1,0
8 2,1,1,1
9 2,2,0,0
10 2,2,1,0
11 2,2,1,1
12 2,2,2,0
13 2,2,2,1
14 2,2,2,2
15 3,0,0,0
16 3,1,0,0
17 3,1,1,0
18 3,1,1,1
19 3,2,0,0
20 3,2,1,0
21 3,2,1,1
22 3,2,2,0
23 3,2,2,1
MATHEMATICA
Array[Floor[Sqrt[5/4 + Sqrt[24*# + 1]] - 3/2] &, 105, 0] (* or *)
Flatten@ Array[ConstantArray[#, Binomial[# + 3, 3]] &, 6, 0] (* Michael De Vlieger, Oct 21 2021 *)
PROG
(Python)
from math import comb
from sympy import integer_nthroot
def A127321(n): return (m:=integer_nthroot(24*(n+2), 4)[0]-2)+(n>=comb(m+4, 4)) # Chai Wah Wu, Nov 04 2024
KEYWORD
nonn
AUTHOR
Graeme McRae, Jan 10 2007
EXTENSIONS
Name corrected by Ridouane Oudra, Oct 21 2021
STATUS
approved