Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Nov 05 2024 12:18:07
%S 0,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
%T 3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
%U 4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
%N First 4-dimensional hyper-tetrahedral coordinate; repeat m C(m+3,3) times; 4-D analog of A056556.
%C If {(W,X,Y,Z)} are 4-tuples of nonnegative integers with W>=X>=Y>=Z ordered by W, X, Y and Z, then W=A127321(n), X=A127322(n), Y=A127323(n) and Z=A127324(n). These sequences are the four-dimensional analogs of the three-dimensional A056556, A056557 and A056558.
%H Michael De Vlieger, <a href="/A127321/b127321.txt">Table of n, a(n) for n = 0..10625</a>, showing all instances of m=0..21.
%F For W>=0, a(A000332(W+3)) = a(A000332(W+4)-1) = W A127321(n+1) = A127321(n)==A127324(n) ? A127321(n)+1 : A127321(n).
%F a(n) = floor(sqrt(5/4 + sqrt(24*n+1)) - 3/2). - _Ridouane Oudra_, Oct 21 2021
%F a(n) = m-2 if n<binomial(m+2,4) and a(n) = m-1 otherwise where m = floor((24*(n+2))^(1/4)). # _Chai Wah Wu_, Nov 04 2024
%e a(23)=3 because a(A000332(3+3)) = a(A000332(3+4)-1) = 3, so a(15) = a(34) = 3.
%e Table of A127321, A127322, A127323, A127324:
%e n W,X,Y,Z
%e 0 0,0,0,0
%e 1 1,0,0,0
%e 2 1,1,0,0
%e 3 1,1,1,0
%e 4 1,1,1,1
%e 5 2,0,0,0
%e 6 2,1,0,0
%e 7 2,1,1,0
%e 8 2,1,1,1
%e 9 2,2,0,0
%e 10 2,2,1,0
%e 11 2,2,1,1
%e 12 2,2,2,0
%e 13 2,2,2,1
%e 14 2,2,2,2
%e 15 3,0,0,0
%e 16 3,1,0,0
%e 17 3,1,1,0
%e 18 3,1,1,1
%e 19 3,2,0,0
%e 20 3,2,1,0
%e 21 3,2,1,1
%e 22 3,2,2,0
%e 23 3,2,2,1
%t Array[Floor[Sqrt[5/4 + Sqrt[24*# + 1]] - 3/2] &, 105, 0] (* or *)
%t Flatten@ Array[ConstantArray[#, Binomial[# + 3, 3]] &, 6, 0] (* _Michael De Vlieger_, Oct 21 2021 *)
%o (Python)
%o from math import comb
%o from sympy import integer_nthroot
%o def A127321(n): return (m:=integer_nthroot(24*(n+2),4)[0]-2)+(n>=comb(m+4,4)) # _Chai Wah Wu_, Nov 04 2024
%Y Cf. A127322, A127323, A127324, A056556, A056557, A056558, A000332, A000292, A000217.
%K nonn
%O 0,6
%A _Graeme McRae_, Jan 10 2007
%E Name corrected by _Ridouane Oudra_, Oct 21 2021