login
A126689
Decimal expansion of negative of Granville-Soundararajan constant.
3
6, 5, 6, 9, 9, 9, 0, 1, 3, 7, 1, 6, 9, 2, 7, 8, 6, 8, 2, 7, 9, 1, 2, 0, 0, 5, 6, 8, 8, 9, 5, 7, 5, 7, 8, 0, 7, 5, 5, 4, 7, 4, 1, 9, 1, 5, 4, 0, 8, 9, 8, 3, 1, 6, 5, 7, 1, 5, 7, 7, 8, 1, 6, 3, 5, 2, 6, 0, 2, 7, 8, 8, 8, 1, 1, 3, 8, 2, 8, 4, 4, 0, 2, 4, 0, 5, 7, 6, 0, 3, 8, 2, 6, 3, 9, 8, 3, 6, 5, 3, 8, 7, 1, 5, 2
OFFSET
0,1
COMMENTS
For any completely multiplicative function f(n) with -1 <= f(n) <= 1, the sum f(1) + f(2) + ... + f(x) is at most (c + o(1))x, where c is this constant. Further, this bound is sharp in that for any c0 > c there are infinitely many f and arbitrarily large x giving a sum less than c0*x. - Charles R Greathouse IV, May 26 2015
Named after the British mathematician Andrew James Granville (b. 1962) and the Indian-American mathematician Kannan Soundararajan (b. 1973). - Amiram Eldar, Jun 23 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, section 2.33, p. 206.
LINKS
Antal Balog, Andrew Granville and Kannan Soundararajan, Multiplicative functions in arithmetic progressions, Annales mathématiques du Québec, Vol. 37, No. 1 (2013), pp. 3-30, see p. 10; arXiv preprint, arXiv:math/0702389 [math.NT], 2007, see p. 7.
Andrew Granville and Kannan Soundararajan, The spectrum of multiplicative functions, Annals of Mathematics, Vol. 153, No. 2 (2001), pp. 407-470, alternative link.
FORMULA
Equals 1-2*log[1+sqrt e]+4*Integral_{t=1..sqrt e}([log t]/(1+t)) dt = 1-log 4+4*Sum_{s>=1} K(s)/(s*2^s) where K(s)=Sum_{k=0..s} binomial(s,k)*(-1)^k*[exp(k/2)-1]/k. - R. J. Mathar, Feb 16 2007
Equals 1 - 2 * A143301. - Amiram Eldar, Aug 25 2020
EXAMPLE
-0.65699901371692786827912005688957578075547419154089...
MAPLE
Digits := 40 ; K := proc(s) 0.5+add( binomial(s, k)*(-1)^k/k*(exp(0.5*k)-1), k=1..s) ; end: A126689 := proc(smax) 1.0-log(4.0)+add(K(s)*2^(2-s)/s, s=1..smax) ; end: for smax from 0 to 2*Digits do print(A126689(smax)) ; od ; # R. J. Mathar, Feb 16 2007
read("transforms3") ; Digits := 120 : x := 1+Pi^2/3+4*dilog(exp(1/2)+1) ; x := evalf(x) ; CONSTTOLIST(x) ; # R. J. Mathar, Sep 20 2009
MATHEMATICA
RealDigits[ N[ 4*PolyLog[2, -Sqrt[E]] + Pi^2/3 + 1, 105]][[1]] (* Jean-François Alcover, Nov 08 2012, after R. J. Mathar *)
PROG
(PARI) 1-2*log(1+exp(1/2))+4*intnum(t=1, exp(1/2), log(t)/(t+1)) \\ Charles R Greathouse IV, Apr 29 2013
(Python)
from mpmath import mp, polylog, sqrt, e, pi
mp.dps=106
print([int(k) for k in list(str(4*polylog(2, -sqrt(e)) + pi**2/3 + 1)[3:-1])]) # Indranil Ghosh, Jul 03 2017
CROSSREFS
Cf. A143301.
Sequence in context: A380141 A019621 A335263 * A243093 A101634 A071176
KEYWORD
cons,nonn
AUTHOR
Jonathan Vos Post, Feb 14 2007
EXTENSIONS
More terms from R. J. Mathar, Feb 16 2007, Sep 20 2009
STATUS
approved