login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125651 Numbers k such that A125650(k) is a perfect square. 5
1, 3, 24, 147, 864, 5043, 29400, 171363, 998784, 5821347, 33929304, 197754483, 1152597600, 6717831123, 39154389144, 228208503747, 1330096633344, 7752371296323, 45184131144600, 263352415571283, 1534930362283104 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Corresponding numbers m such that m^2 = A125650(a(n)) are listed in A125652.

3 divides a(n) for n>1. For n>1 a(n) = 3*A001108(n-1), where A001108(k) = {0, 1, 8, 49, 288, 1681, ...}, A001108(k)-th triangular number is a square. - Alexander Adamchuk, Jan 19 2007

Disregarding the term 1, numbers k such that A071910(k) is a nonzero square; i.e., numbers k such that A000096(k) = k*(k+3)/2 is a nonzero square. - Rick L. Shepherd, Jul 13 2012

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (7, -7, 1).

FORMULA

For n>1, a(n+2) = 6*a(n+1) - a(n) + 6.

For n>1, a(n) = ((3+2*sqrt(2))^(n-1) + (3-2*sqrt(2))^(n-1))*3/4 - 3/2.

a(2k) = 3*A002315(n)^2; a(2k+1) = 6*A001542(n)^2.

a(n) = 3*A001108(n-1) for n>1. - Alexander Adamchuk, Jan 19 2007

For n>1, a(2)=3, a(3)=24, a(4)=147, a(n)=7*a(n-1)-7*a(n-2)+a(n-3) [From Harvey P. Dale, May 15 2011]

G.f.: (-1+x(4+(-10+x)x))/((-1+x)(1+(-6+x)x)) [From Harvey P. Dale, May 15 2011]

EXAMPLE

a(2)=3 because A125650(3)=9=3^2; a(3)=24 because A125650(24)=81=9^2.

MATHEMATICA

Join[{1}, LinearRecurrence[{7, -7, 1}, {3, 24, 147}, 35]] (* or *) CoefficientList[Series[(-1+x(4+(-10+x)x))/((-1+x)(1+(-6+x) x)), {x, 0, 35}], x] (* Harvey P. Dale, May 15 2011 *)

PROG

(MAGMA) I:=[1, 3, 24, 147]; [n le 4 select I[n] else 7*Self(n-1)-7*Self(n-2)+Self(n-3): n in [1..30]]; Vincenzo Librandi, May 21 2012

CROSSREFS

Cf. A125650, A125652.

Cf. A001108, A071910, A000096, A000217.

Sequence in context: A201231 A212698 A226511 * A043017 A003443 A119581

Adjacent sequences:  A125648 A125649 A125650 * A125652 A125653 A125654

KEYWORD

nonn,easy

AUTHOR

Alexander Adamchuk, Nov 29 2006

EXTENSIONS

Edited by Max Alekseyev, Jan 11 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 09:08 EST 2018. Contains 318148 sequences. (Running on oeis4.)