This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125651 Numbers k such that A125650(k) is a perfect square. 5
 1, 3, 24, 147, 864, 5043, 29400, 171363, 998784, 5821347, 33929304, 197754483, 1152597600, 6717831123, 39154389144, 228208503747, 1330096633344, 7752371296323, 45184131144600, 263352415571283, 1534930362283104 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Corresponding numbers m such that m^2 = A125650(a(n)) are listed in A125652. 3 divides a(n) for n>1. For n>1 a(n) = 3*A001108(n-1), where A001108(k) = {0, 1, 8, 49, 288, 1681, ...}, A001108(k)-th triangular number is a square. - Alexander Adamchuk, Jan 19 2007 Disregarding the term 1, numbers k such that A071910(k) is a nonzero square; i.e., numbers k such that A000096(k) = k*(k+3)/2 is a nonzero square. - Rick L. Shepherd, Jul 13 2012 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (7, -7, 1). FORMULA For n>1, a(n+2) = 6*a(n+1) - a(n) + 6. For n>1, a(n) = ((3+2*sqrt(2))^(n-1) + (3-2*sqrt(2))^(n-1))*3/4 - 3/2. a(2k) = 3*A002315(n)^2; a(2k+1) = 6*A001542(n)^2. a(n) = 3*A001108(n-1) for n>1. - Alexander Adamchuk, Jan 19 2007 For n>1, a(2)=3, a(3)=24, a(4)=147, a(n)=7*a(n-1)-7*a(n-2)+a(n-3) [From Harvey P. Dale, May 15 2011] G.f.: (-1+x(4+(-10+x)x))/((-1+x)(1+(-6+x)x)) [From Harvey P. Dale, May 15 2011] EXAMPLE a(2)=3 because A125650(3)=9=3^2; a(3)=24 because A125650(24)=81=9^2. MATHEMATICA Join[{1}, LinearRecurrence[{7, -7, 1}, {3, 24, 147}, 35]] (* or *) CoefficientList[Series[(-1+x(4+(-10+x)x))/((-1+x)(1+(-6+x) x)), {x, 0, 35}], x] (* Harvey P. Dale, May 15 2011 *) PROG (MAGMA) I:=[1, 3, 24, 147]; [n le 4 select I[n] else 7*Self(n-1)-7*Self(n-2)+Self(n-3): n in [1..30]]; Vincenzo Librandi, May 21 2012 CROSSREFS Cf. A125650, A125652. Cf. A001108, A071910, A000096, A000217. Sequence in context: A201231 A212698 A226511 * A043017 A003443 A119581 Adjacent sequences:  A125648 A125649 A125650 * A125652 A125653 A125654 KEYWORD nonn,easy AUTHOR Alexander Adamchuk, Nov 29 2006 EXTENSIONS Edited by Max Alekseyev, Jan 11 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 23:08 EDT 2019. Contains 328379 sequences. (Running on oeis4.)