

A125313


Decimal expansion of 2*exp(gamma).


0



1, 1, 2, 2, 9, 1, 8, 9, 6, 7, 1, 3, 3, 7, 7, 0, 3, 3, 9, 6, 4, 8, 2, 8, 6, 4, 2, 9, 5, 8, 1, 7, 6, 1, 5, 7, 3, 5, 3, 1, 4, 2, 0, 7, 7, 3, 8, 5, 0, 3, 0, 6, 3, 3, 6, 3, 0, 8, 3, 1, 8, 1, 5, 2, 0, 9, 0, 1, 7, 5, 9, 3, 4, 1, 4, 8, 5, 7, 1, 2, 7, 4, 2, 6, 5, 7, 4, 2, 3, 1, 7, 8, 6, 8, 4, 2, 8, 7, 1, 7, 5, 3, 4, 6, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

"... the prediction here is that Pi(x) ~ a*x/log x where a = 2exp(gamma) = 1.1229..., in conflict with the Prime Number Theorem"  from the Niven et al. reference.


REFERENCES

Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.3, LandauRamanujan constant, p. 100.


LINKS

Table of n, a(n) for n=1..105.
A. Granville, Harald Cramér and the distribution of prime numbers, Scandinavian Actuarial Journal 1: 1228, (1995) DOI:10.1080/03461238.1995.10413946.
Simon Plouffe, Plouffe's Inverter.
S. K. Wilson and B. R. Duffy, An asymptotic analysis of small holes in thin fluid layers, Journal of Engineering Mathematics, July 1996, Volume 30, Issue 4, pp 445457.


FORMULA

Equals 2*A080130, 2*A001113^(A001620) and 2/A073004 = 2/A068985^A001620.
Equals A088540 * A088541.  JeanFrançois Alcover, Jun 04 2014
Equals e^(A002162A001620).  John W. Nicholson, Apr 03 2015


EXAMPLE

1.12291896713377033964828642958176157353142077385030633630831815209...


MATHEMATICA

RealDigits[2*E^EulerGamma, 10, 111][[1]]


CROSSREFS

Sequence in context: A011148 A176020 A048650 * A199058 A082838 A074961
Adjacent sequences: A125310 A125311 A125312 * A125314 A125315 A125316


KEYWORD

cons,nonn


AUTHOR

Robert G. Wilson v, Dec 08 2006


STATUS

approved



