The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125042 Primes of the form 48k+17 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^8 + 1; Mod[p,48]=17}, where Q is the product of previous terms in the sequence. 0
 17, 47441, 33000748370307713, 21377 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All prime divisors of (2Q)^8 + 1 are congruent to 1 modulo 16. At least one prime divisor of (2Q)^8 + 1 is congruent to 2 modulo 3 and hence to 17 modulo 48. The first two terms are the same as those of A125040. REFERENCES G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271. LINKS N. Hobson, Home page (listed in lieu of email address) EXAMPLE a(3) = 33000748370307713 is the smallest prime divisor congruent to 17 mod 48 of (2Q)^8 + 1 = 45820731194492299767895461612240999140120699535617 = 5136468762577 * 33000748370307713 * 270317134666005456817, where Q = 17 * 47441. MATHEMATICA a = {17}; q = 1; For[n = 2, n ≤ 2, n++,     q = q*Last[a];     AppendTo[a, Min[Select[FactorInteger[(2*q)^8 + 1][[All, 1]],     Mod[#, 48] \[Equal] 17 &]]];     ]; a (* Robert Price, Jul 14 2015 *) CROSSREFS Cf. A000945, A057204-A057208, A051308-A051335, A124984-A124993, A125037-A125045. Sequence in context: A068733 A066161 A125040 * A138942 A075902 A013760 Adjacent sequences:  A125039 A125040 A125041 * A125043 A125044 A125045 KEYWORD more,nonn AUTHOR Nick Hobson, Nov 18 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 01:03 EST 2020. Contains 332086 sequences. (Running on oeis4.)