login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125027
Binomial transform of the "1,2,3,..." triangle.
1
1, 3, 3, 9, 11, 6, 26, 32, 27, 10, 72, 86, 85, 54, 15, 192, 222, 233, 189, 95, 21, 496, 558, 597, 549, 371, 153, 28, 1248, 1374, 1473, 1446, 1160, 664, 231, 36, 3072, 3326, 3549, 3600, 3203, 2246, 1107, 332, 45, 7424, 7934, 8409, 8659, 8201, 6567, 4051, 1745, 459, 55, 17664, 18686, 19669, 20367, 20015, 17503, 12597, 6893, 2629, 615, 66
OFFSET
1,2
FORMULA
Given the triangle (natural numbers in succession: 1; 2,3; 4,5,6; ...) as an infinite matrix M and P = Pascal's triangle as a lower triangular matrix, perform P*M, deleting the zeros.
The row sums s(n) = 1, 6, 26, 95, 312, 952, ... obey (-3*n+2)*s(n) +(9*n+7)*s(n-1) + 2*(-3*n-2)*s(n-2) = 0. - R. J. Mathar, May 21 2018
EXAMPLE
First few rows of the triangle:
1;
3, 3;
9, 11, 6;
26, 32, 27, 10;
72, 86, 85, 54, 15;
...
MAPLE
A27 := proc(n, k)
option remember;
if k>= 0 and k <=n then
if k = 0 then
1+procname(n-1, n-1) ;
else
procname(n, 0)+k ;
end if;
else
0;
end if;
end proc:
A125027 := proc(n, k)
add( binomial(n, j)*A27(j, k), j=k..n) ;
end proc: # R. J. Mathar, May 21 2018
MATHEMATICA
A27[n_, k_] := A27[n, k] = If[k >= 0 && k <= n, If[k == 0, 1+A27[n-1, n-1], A27[n, 0]+k], 0];
A125027[n_, k_] := Sum[Binomial[n, j]*A27[j, k], {j, k, n}];
Table[A125027[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2024, after R. J. Mathar *)
CROSSREFS
Cf. A072863 (first column), A000217 (diagonal), A164845 (subdiagonal).
Sequence in context: A121072 A133164 A022156 * A360244 A360242 A005296
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Nov 15 2006
STATUS
approved