login
A124877
Numbers k such that A007408(k) is prime.
3
3, 15, 19, 26, 31, 129, 139, 211, 242, 246, 251, 474, 552, 558, 694, 801, 1001, 1123, 1313, 1687, 4168, 4484, 5611, 6869, 12197, 13472
OFFSET
1,1
EXAMPLE
a(1) = 3 since A007408(3)= 251 is the first prime number of sequence A007408,
a(2) = 15 since A007408(15) = 56154295334575853 is the second prime number of sequence A007408.
MAPLE
select(isprime@A007408, [$1..200]);
PROG
(PARI) num=1; den=1; for(k=2, 2000, k3=k^3; s=(num*k3+den)/(den*k3); num=numerator(s); den=denominator(s); if(isprime(num), print1(k", "))) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 26 2008
(Python) # uses A007408gen() and imports from A007408
from sympy import isprime
def agen(): yield from (k for k, ak in enumerate(A007408gen(), 1) if isprime(ak))
print(list(islice(agen(), 15))) # Michael S. Branicky, Jun 26 2022
CROSSREFS
Cf. A007408.
Cf. A125503. [From Alexander Adamchuk, Apr 26 2010]
Sequence in context: A206367 A039570 A032644 * A111517 A083545 A224872
KEYWORD
hard,more,nonn
AUTHOR
M. F. Hasler, Nov 11 2006
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 26 2008
a(21)-a(24) from Alexander Adamchuk, Apr 26 2010
a(25)-a(26) from Michael S. Branicky, Nov 16 2024
STATUS
approved