login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124863
Expansion of 1 / chi(q)^12 in powers of q where chi() is a Ramanujan theta function.
3
1, -12, 78, -376, 1509, -5316, 16966, -50088, 138738, -364284, 913824, -2203368, 5130999, -11585208, 25444278, -54504160, 114133296, -234091152, 471062830, -931388232, 1811754522, -3471186596, 6556994502, -12222818640, 22502406793
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * (k * k') / 4 in powers of q where k is the Jacobian elliptic modulus, k' the complementary modulus and q is the nome.
Expansion of q^(-1/2) * (eta(q) * eta(q^4) / eta(q^2)^2)^12 in powers of q.
Euler transform of period 4 sequence [ -12, 12, -12, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 22 2011
G.f.: Product_{k>0} (1 + (-x)^k)^12 = Product_{k>0} 1/(1 + x^(2*k - 1))^12. [corrected by Vaclav Kotesovec, Nov 16 2017]
a(n) = (-1)^n * A022577(n). Convolution inverse of A112142. Convolution square is A100130.
G.f.: T(0), where T(k) = 1 - 1/(1 - 1/(1 - 1/(1+(-x)^(k+1))^12/T(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)) / (128*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
G.f.: exp(-12*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 08 2018
EXAMPLE
G.f. = 1 - 12*x + 78*x^2 - 376*x^3 + 1509*x^4 - 5316*x^5 + 16966*x^6 - 50088*x^7 + ...
G.f. = q - 12*q^3 + 78*q^5 - 376*q^7 + 1509*q^9 - 5316*q^11 + 16966*q^13 - 50088*q^15 + ...
MATHEMATICA
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ ((1 - m) m/16/q)^(-1/2), {q, 0, n}]]; (* Michael Somos, Jul 22 2011 *)
a[ n_] := SeriesCoefficient[1/Product[1 + q^k, {k, 1, n, 2}]^12, {q, 0, n}]; (* Michael Somos, Jul 22 2011, fixed by Vaclav Kotesovec, Nov 16 2017 *)
nmax = 30; CoefficientList[Series[Product[1/(1 + x^(2*k - 1))^12, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) / eta(x^2 + A)^2)^12, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 10 2006
STATUS
approved