login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124612
Poincaré series [or Poincare series] P(C_{4,2}; x).
1
1, 2, 6, 14, 34, 68, 144, 276, 534, 974, 1774, 3106, 5410, 9146, 15334, 25158, 40884, 65264, 103204, 160808, 248222, 378350, 571534, 853890, 1264962, 1855638, 2700490, 3895626, 5577846, 7923072, 11176164, 15650712, 21774473, 30092868, 41337096, 56434524
OFFSET
0,2
LINKS
Dragomir Z. Djokovic, Poincaré series [or Poincare series] of some pure and mixed trace algebras of two generic matrices. See Table 3, lines 6 and 7, also Table 5, lines 3-7.
Index entries for linear recurrences with constant coefficients, signature (3, 1, -6, -4, -6, 26, 24, -14, -46, -88, 46, 135, 125, -15, -304, -198, 34, 366, 404, -108, -384, -480, 0, 480, 384, 108, -404, -366, -34, 198, 304, 15, -125, -135, -46, 88, 46, 14, -24, -26, 6, 4, 6, -1, -3, 1).
FORMULA
G.f.: (1-x^2+x^4)*(1-x-x^3+x^4+2*x^5+x^6-x^7-x^9+x^10) / ((1-x)^3*(1-x^2)^4*(1-x^3)^5*(1-x^4)^5).
MATHEMATICA
CoefficientList[Series[(1-x^2+x^4)*(1-x-x^3+x^4+2*x^5+x^6-x^7-x^9+x^10) / ((1-x)^3*(1-x^2)^4*(1-x^3)^5*(1-x^4)^5), {x, 0, 35}], x] (* Stefano Spezia, Mar 14 2024 *)
CROSSREFS
Cf. A124637.
Sequence in context: A005380 A309536 A257557 * A230439 A184697 A124613
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 21 2006
STATUS
approved