login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Poincaré series [or Poincare series] P(C_{4,2}; x).
1

%I #18 Mar 15 2024 09:46:50

%S 1,2,6,14,34,68,144,276,534,974,1774,3106,5410,9146,15334,25158,40884,

%T 65264,103204,160808,248222,378350,571534,853890,1264962,1855638,

%U 2700490,3895626,5577846,7923072,11176164,15650712,21774473,30092868,41337096,56434524

%N Poincaré series [or Poincare series] P(C_{4,2}; x).

%H Dragomir Z. Djokovic, <a href="http://arXiv.org/abs/math.AC/0609262">Poincaré series [or Poincare series] of some pure and mixed trace algebras of two generic matrices</a>. See Table 3, lines 6 and 7, also Table 5, lines 3-7.

%H <a href="/index/Rec#order_46">Index entries for linear recurrences with constant coefficients</a>, signature (3, 1, -6, -4, -6, 26, 24, -14, -46, -88, 46, 135, 125, -15, -304, -198, 34, 366, 404, -108, -384, -480, 0, 480, 384, 108, -404, -366, -34, 198, 304, 15, -125, -135, -46, 88, 46, 14, -24, -26, 6, 4, 6, -1, -3, 1).

%F G.f.: (1-x^2+x^4)*(1-x-x^3+x^4+2*x^5+x^6-x^7-x^9+x^10) / ((1-x)^3*(1-x^2)^4*(1-x^3)^5*(1-x^4)^5).

%t CoefficientList[Series[(1-x^2+x^4)*(1-x-x^3+x^4+2*x^5+x^6-x^7-x^9+x^10) / ((1-x)^3*(1-x^2)^4*(1-x^3)^5*(1-x^4)^5),{x,0,35}],x] (* _Stefano Spezia_, Mar 14 2024 *)

%Y Cf. A124637.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Dec 21 2006