login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124637
Poincaré series [or Poincare series] P(C_{4,2}(0); t).
1
1, 0, 3, 4, 12, 14, 42, 56, 126, 182, 360, 532, 972, 1432, 2452, 3636, 5902, 8654, 13560, 19664, 29810, 42714, 63056, 89172, 128716, 179604, 254176, 350284, 487084, 663006, 907866, 1221456, 1649213, 2194634, 2925833, 3853200, 5077908, 6622158, 8634634, 11157700, 14406370, 18455400
OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (1, 4, 1, -6, -19, -6, 31, 54, 31, -80, -145, -75, 120, 300, 176, -146, -434, -356, 126, 500, 490, 0, -490, -500, -126, 356, 434, 146, -176, -300, -120, 75, 145, 80, -31, -54, -31, 6, 19, 6, -1, -4, -1, 1).
FORMULA
G.f.: (1-x^2+x^4)*(1-x-x^3+x^4+2*x^5+x^6-x^7-x^9+x^10) / ((1-x)*(1-x^2)^4*(1-x^3)^5*(1-x^4)^5). - Robin Visser, Mar 13 2024
PROG
(Sage)
def a(n):
if n==0: return 1
f = (1-x^2+x^4)*(1-x-x^3+x^4+2*x^5+x^6-x^7-x^9+x^10)
g = (1-x)*(1-x^2)^4*(1-x^3)^5*(1-x^4)^5
return (f/g).taylor(x, 0, n).coefficient(x^n) # Robin Visser, Mar 13 2024
CROSSREFS
Cf. A124612.
Sequence in context: A376979 A336612 A070287 * A352907 A047173 A116653
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 21 2006
EXTENSIONS
More terms from Robin Visser, Mar 13 2024
STATUS
approved