login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124469
Triangle, read by rows, where row n equals the inverse binomial transform of column n in the rectangular table A124460.
2
1, 1, 1, 1, 3, 1, 1, 8, 6, 1, 1, 22, 28, 11, 1, 1, 65, 120, 81, 20, 1, 1, 209, 500, 494, 219, 37, 1, 1, 730, 2088, 2733, 1812, 578, 70, 1, 1, 2743, 8884, 14411, 12904, 6299, 1518, 135, 1, 1, 10958, 38803, 74484, 84424, 56590, 21384, 4007, 264, 1, 1, 46057, 174366
OFFSET
0,5
COMMENTS
In table A124460, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * R_k(y)^n for n>=0.
FORMULA
Secondary diagonal T(n+1,n) = 2^n + n = A006127(n).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 3, 1;
1, 8, 6, 1;
1, 22, 28, 11, 1;
1, 65, 120, 81, 20, 1;
1, 209, 500, 494, 219, 37, 1;
1, 730, 2088, 2733, 1812, 578, 70, 1;
1, 2743, 8884, 14411, 12904, 6299, 1518, 135, 1;
1, 10958, 38803, 74484, 84424, 56590, 21384, 4007, 264, 1;
1, 46057, 174366, 383391, 526121, 453082, 238853, 72076, 10693, 521, 1;
PROG
(PARI) {T(n, k)=local(R=vector(n+2, r, vector(n+2, c, binomial(r+c-2, c-1)))); for(i=0, n, for(r=0, n, R[r+1]=Vec(sum(c=0, n, x^c*Ser(R[c+1])^r+O(x^(n+1)))))); Vec(subst(Ser(vector(n+1, j, R[j][n+1])), x, x/(1+x))/(1+x))[k+1]}
CROSSREFS
Cf. A124470 (row sums), A006127 (diagonal T(n+1, n)); A124460 (table).
Sequence in context: A091698 A134380 A263859 * A094816 A097712 A238688
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 03 2006
STATUS
approved