login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, read by rows, where row n equals the inverse binomial transform of column n in the rectangular table A124460.
2

%I #3 Mar 30 2012 18:37:01

%S 1,1,1,1,3,1,1,8,6,1,1,22,28,11,1,1,65,120,81,20,1,1,209,500,494,219,

%T 37,1,1,730,2088,2733,1812,578,70,1,1,2743,8884,14411,12904,6299,1518,

%U 135,1,1,10958,38803,74484,84424,56590,21384,4007,264,1,1,46057,174366

%N Triangle, read by rows, where row n equals the inverse binomial transform of column n in the rectangular table A124460.

%C In table A124460, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k * R_k(y)^n for n>=0.

%F Secondary diagonal T(n+1,n) = 2^n + n = A006127(n).

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 3, 1;

%e 1, 8, 6, 1;

%e 1, 22, 28, 11, 1;

%e 1, 65, 120, 81, 20, 1;

%e 1, 209, 500, 494, 219, 37, 1;

%e 1, 730, 2088, 2733, 1812, 578, 70, 1;

%e 1, 2743, 8884, 14411, 12904, 6299, 1518, 135, 1;

%e 1, 10958, 38803, 74484, 84424, 56590, 21384, 4007, 264, 1;

%e 1, 46057, 174366, 383391, 526121, 453082, 238853, 72076, 10693, 521, 1;

%o (PARI) {T(n,k)=local(R=vector(n+2,r,vector(n+2,c,binomial(r+c-2,c-1)))); for(i=0,n,for(r=0,n,R[r+1]=Vec(sum(c=0,n,x^c*Ser(R[c+1])^r+O(x^(n+1)))))); Vec(subst(Ser(vector(n+1,j,R[j][n+1])),x,x/(1+x))/(1+x))[k+1]}

%Y Cf. A124470 (row sums), A006127 (diagonal T(n+1, n)); A124460 (table).

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Nov 03 2006